1
|
Salse-Batán J, Torrado P, Marina M. Are There Differences Between Sexes in Performance-Related Variables During a Maximal Intermittent Flywheel Test? Sports Health 2025:19417381251320574. [PMID: 39994496 PMCID: PMC11851591 DOI: 10.1177/19417381251320574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Isometric and dynamic tasks of low-to-moderate intensities have been used to study sex differences in fatigability; however, maximal exertions with flywheel devices (FDs) have not been used. This study aimed to (1) detect sex differences in fatigue-related performance in a maximal intermittent fatiguing protocol on a FD, and (2) investigate the most sensitive dynamometric and mechanical variables for assessing fatigue in both sexes. HYPOTHESIS No sex differences should exist when performing this protocol on a FD. STUDY DESIGN Cohort observational study. LEVEL OF EVIDENCE Level 3. METHODS A total of 34 young adults (17 female/17 male) performed 10 sets of 10 repetitions with 3 minutes of passive recovery of a half-squat exercise on a FD. Inter- and intraset analysis of force, power, velocity, work, and impulse, together with their relative change and slope, were calculated during concentric and eccentric phases. Raw data were also normalized to body mass in the interset analysis. The relative changes in each variable were compared. RESULTS Men showed greater and earlier decreases in performance throughout sets (P < .05; ηp2 ≥ 0.08), but these differences were not consistent after normalization for body mass (P > .05; ηp2 ≤ 0.05). Irrespective of sex and phase, the intraset analysis revealed that relative change was higher in the last set (P ≤ .03; ηp2 ≥ 0.14), with power being the most sensitive variable for detecting performance decline (P ≤ .04; ηp2 = 0.49). CONCLUSION Women experienced slower and delayed fatigue kinetics than men during a maximal intermittent fatiguing protocol with FD if body dimensionality is not considered. For training purposes, power seems to be the most sensitive and discriminative variable for detecting decreases in performance. CLINICAL RELEVANCE Body dimensionality is a key factor that must be considered when comparing both sexes in FDs.
Collapse
Affiliation(s)
- Jorge Salse-Batán
- Research Group in Physical Activity and Health (GRAFAiS), Institut Nacional d’Educació Física de Catalunya (INEFC) - Universitat de Barcelona (UB), Barcelona, Spain
| | - Priscila Torrado
- Research Group in Physical Activity and Health (GRAFAiS), Institut Nacional d’Educació Física de Catalunya (INEFC) - Universitat de Barcelona (UB), Barcelona, Spain
| | - Michel Marina
- Research Group in Physical Activity and Health (GRAFAiS), Institut Nacional d’Educació Física de Catalunya (INEFC) - Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Macchi R, Kunimasa Y, Chavet P, Corcelle B, Pomportes L, Fazzari C, Hays A, Vercruyssen F, Rossi F, Bendahan D, Nicol C. Effect of a graded running race on lower limb muscle damage, jump performance and muscle soreness in men and women. Scand J Med Sci Sports 2024; 34:e14643. [PMID: 38700004 DOI: 10.1111/sms.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE Delayed structural and functional recovery after a 20 km graded running race was analyzed with respect to the sex effect. METHODS Thirteen female and 14 male recreational runners completed the race and three test sessions: one before (PRE) and two after, once on Day 1 or 2 (D1-2) and then on Day 3 or 4 (D3-4). Muscle damage was assessed indirectly using ultrasonography to quantify changes in cross-sectional area (CSA) of 10 lower-limb muscles. Delayed onset of muscle soreness (DOMS) was assessed for three muscle groups. Functional recovery was quantified by kinetic analysis of a squat jump (SJ) and a drop jump (DJ) test performed on a sledge ergometer. Linear mixed models were used to assess control group reproducibility and recovery patterns according to sex. RESULTS Regardless of sex, DOMS peaked at D1-2 for all muscle groups and resolved at D3-4. CSA was increased in each muscle group until D3-4, especially in the semimembranosus muscle. A specific increase was found in the short head of the biceps femoris in women. Regardless of sex, SJ and DJ performances declined up to D3-4. Depending on the muscle, positive and/or negative correlations were found between structural and functional changes. Some of these were sex-specific. CONCLUSION Structural and functional recovery was incomplete in both sexes up to D3-4, although DOMS had disappeared. More emphasis should be placed on hamstring muscle recovery. Highlighting the intermuscular compensations that can occur during multi-joint testing tasks, the structural-functional relationships were either positive or negative, muscle- and sex-dependent.
Collapse
Affiliation(s)
- Robin Macchi
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Yoko Kunimasa
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
- Niigata University, Niigata, Japan
| | | | - Baptiste Corcelle
- Laboratory of Human Motricity, Heath and Sport Expertise (LAMHESS), UPR 6312, University Côte d'Azur, Nice, France
| | - Laura Pomportes
- Aix-Marseille Université, HIPE Human-Lab (UAR202324378), Marseille, France
| | | | - Arnaud Hays
- Aix-Marseille Université, HIPE Human-Lab (UAR202324378), Marseille, France
| | | | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Aix-Marseille Univ, CNRS (UMR 7339), CRMBM, Marseille, France
| | - David Bendahan
- Aix-Marseille Univ, CNRS (UMR 7339), CRMBM, Marseille, France
| | | |
Collapse
|
3
|
Contento VS, Power GA. Eccentric exercise-induced muscle weakness amplifies the history dependence of force. Eur J Appl Physiol 2023; 123:749-767. [PMID: 36447012 DOI: 10.1007/s00421-022-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Following active lengthening or shortening contractions, isometric steady-state torque is increased (residual force enhancement; rFE) or decreased (residual force depression; rFD), respectively, compared to fixed-end isometric contractions at the same muscle length and level of activation. Though the mechanisms underlying this history dependence of force have been investigated extensively, little is known about the influence of exercise-induced muscle weakness on rFE and rFD. PURPOSE Assess rFE and rFD in the dorsiflexors at 20%, 60%, and 100% maximal voluntary torque (MVC) and activation matching, and electrically stimulated at 20% MVC, prior to, 1 h following, and 24 h following 150 maximal eccentric dorsiflexion contractions. METHODS Twenty-six participants (13 male, 24.7 ± 2.0y; 13 female, 22.5 ± 3.6y) were seated in a dynamometer with their right hip and knee angle set to 110° and 140°, respectively, with an ankle excursion set between 0° and 40° plantar flexion (PF). MVC torque, peak twitch torque, and prolonged low frequency force depression were used to assess eccentric exercise-induced neuromuscular impairments. History-dependent contractions consisted of a 1 s isometric (40°PF or 0°PF) phase, a 1 s shortening or lengthening phase (40°/s), and an 8 s isometric (0°PF or 40°PF) phase. RESULTS Following eccentric exercise; MVC torque was decreased, prolonged low frequency force depression was present, and both rFE and rFD increased for all maximal and submaximal conditions. CONCLUSIONS The history dependence of force during voluntary torque and activation matching, and electrically stimulated contractions is amplified following eccentric exercise. It appears that a weakened neuromuscular system amplifies the magnitude of the history-dependence of force.
Collapse
Affiliation(s)
- Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Brown BA, Ye X, Xin L. The Contralateral Repeated Bout Effect of Elbow Flexors Is Not Observed in Young Women Following Mild Muscle Damage from Eccentric Exercises. Sports (Basel) 2023; 11:sports11030062. [PMID: 36976948 PMCID: PMC10056121 DOI: 10.3390/sports11030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Investigation of the contralateral repeated bout effect (CL-RBE) in women is scarce. Therefore, this study aimed at examining whether CL-RBE exists in women. Twelve healthy women (age: 20.9 ± 2.5 years) performed two bouts of maximal elbow flexor eccentric exercise (3 sets × 15 repetitions per bout) separated by 14 days, using the opposite arms. Surface Electromyography (EMG) was recorded during both exercise bouts. The isokinetic muscle strength (60°/s), muscle soreness, range of motion (ROM), limb girth, and blood creatine kinase activity were measured pre-exercise, and at 24 and 48 h post-exercise with the muscle strength being measured immediately post-exercise as well. Significant main effects of time were observed for muscle strength, muscle soreness and ROM (p < 0.05). There were no significant differences between bouts for all the measured variables including the EMG median frequency (p > 0.05). These results suggest that the CL-RBE of elbow flexors was not evident in young healthy women. This was because the mild muscle damage induced by the initial bout of exercise was either not enough to initiate the CL-RBE or the CL-RBE in women lasted shorter than two weeks. This study provides important information for future studies on CL-RBE in women.
Collapse
Affiliation(s)
- Bailey A Brown
- Snell Prosthetics and Orthotics, Little Rock, AR 72205, USA
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Ling Xin
- Exercise Science Program, Biology Department, Simmons University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
6
|
Rai A, Bhati P, Anand P. Exercise induced muscle damage and repeated bout effect: an update for last 10 years and future perspectives. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exercise-induced muscle damage (EIMD) and repeated bout effect (RBE) are widely researched across various populations. EIMD is the muscle damage occurring after one bout of unaccustomed exercise while RBE is the attenuation of the same muscle damage in subsequent second bout. RBE seems to have significant implications for exercise prescription. Despite existence of vast literature, there is lack of clarity on the effects of EIMD and RBE in a healthy population. The purpose of this study is to review the literature on EIMD and RBE in healthy participants published during the last 10 years. The search of major databases (including Scopus, Google Scholar and PubMed) was conducted using specific keywords ‘Exercise induced muscle damage’, ‘Repeated bout effect’, ‘Healthy participants’ ‘Pre-conditioning’, ‘Eccentric exercise’. Studies published from 2011 onwards which included EIMD and RBE assessment in healthy participants were included in this review. Database searching revealed a total of 38 studies on EIMD and RBE in healthy participants. Three major themes of papers were identified that focused on EIMD and RBE along with (1) age related differences, (2) sex-based differences, and (3) response in athletes. Findings of this comprehensive review suggests that both EIMD and RBE are age, and sex specific. Delayed onset muscle soreness played a major role in both EIMD and RBE in all the population types. Female participants are less susceptible to EIMD as compared to age-matched male counterparts. Moreover, both EIMD and RBE are more elicited in middle aged and younger adults as compared to children and older adults while the magnitude of RBE turns out to be minimal in trained individuals due to persisting adaptations.
Collapse
Affiliation(s)
- A. Rai
- Faculty of Physiotherapy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - P. Bhati
- Faculty of Physiotherapy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - P. Anand
- Faculty of Physiotherapy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| |
Collapse
|
7
|
D’Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front Hum Neurosci 2021; 15:701916. [PMID: 34305557 PMCID: PMC8301373 DOI: 10.3389/fnhum.2021.701916] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Because rate of force development (RFD) is an emerging outcome measure for the assessment of neuromuscular function in unfatigued conditions, and it represents a valid alternative/complement to the classical evaluation of pure maximal strength, this scoping review aimed to map the available evidence regarding RFD as an indicator of neuromuscular fatigue. Thus, following a general overview of the main studies published on this topic, we arbitrarily compared the amount of neuromuscular fatigue between the "gold standard" measure (maximal voluntary force, MVF) and peak, early (≤100 ms) and late (>100 ms) RFD. Seventy full-text articles were included in the review. The most-common fatiguing exercises were resistance exercises (37% of the studies), endurance exercises/locomotor activities (23%), isokinetic contractions (17%), and simulated/real sport situations (13%). The most widely tested tasks were knee extension (60%) and plantar flexion (10%). The reason (i.e., rationale) for evaluating RFD was lacking in 36% of the studies. On average, the amount of fatigue for MVF (-19%) was comparable to late RFD (-19%) but lower compared to both peak RFD (-25%) and early RFD (-23%). Even if the rationale for evaluating RFD in the fatigued state was often lacking and the specificity between test task and fatiguing exercise characteristics was not always respected in the included studies, RFD seems to be a valid indicator of neuromuscular fatigue. Based on our arbitrary analyses, peak RFD and early phase RFD appear even to be more sensitive to quantify neuromuscular fatigue than MVF and late phase RFD.
Collapse
Affiliation(s)
- Samuel D’Emanuele
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy
- NeuroMuscularFunction | Research Group, School of Exercise and Sport Sciences (SUISM), University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Verona, Italy
| | - Gennaro Boccia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- NeuroMuscularFunction | Research Group, School of Exercise and Sport Sciences (SUISM), University of Turin, Turin, Italy
| |
Collapse
|
8
|
The torque-frequency relationship is impaired similarly following two bouts of eccentric exercise: No evidence of a protective repeated bout effect. J Biomech 2021; 122:110448. [PMID: 33905969 DOI: 10.1016/j.jbiomech.2021.110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
High-intensity eccentric exercise can lead to muscle damage and weakness. The 'repeated bout effect' (RBE) can attenuate these impairments when performing a subsequent bout. The influence of eccentric exercise-induced muscle damage on low-frequency force production is well-characterized; however, it is unclear how eccentric exercise and the RBE affect torque production across a range of stimulation frequencies (i.e., the torque-frequency relationship). We investigated the influence of an initial (Bout 1) and repeated bout (Bout 2) of eccentric exercise on the elbow flexor torque-frequency relationship. Eleven males completed two bouts of high-intensity eccentric elbow flexions, 4 weeks apart. Torque-frequency relationships were constructed at baseline and 0.5, 24, 48, 72, 96, and 168 h following both bouts via percutaneous stimulation at 1, 6, 10, 20, 30, 40, 50, and 100 Hz. Serum creatine kinase activity, self-reported muscle soreness, and isometric maximum voluntary contraction torque indirectly inferred the presence of muscle damage following Bout 1, and attenuation of muscle damage following Bout 2. Torque amplitude at all stimulation frequencies was impaired 30 min following eccentric exercise, however, torque at lower (1-10 Hz) and higher frequencies (40-100 Hz) recovered within 24 h while torque across the middle frequency range (20-30 Hz) recovered by 48 h. No between-bout differences were detected in absolute or normalized torque at any stimulation frequency, indicating no protective RBE on the elbow flexor torque-frequency relationship.
Collapse
|
9
|
Bruce CD, Ruggiero L, Dix GU, Cotton PD, McNeil CJ. Females and males do not differ for fatigability, muscle damage and magnitude of the repeated bout effect following maximal eccentric contractions. Appl Physiol Nutr Metab 2021; 46:238-246. [DOI: 10.1139/apnm-2020-0516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unaccustomed eccentric (ECC) exercise induces muscle fatigue as well as damage and initiates a protective response to minimize impairments from a subsequent bout (i.e., repeated bout effect; RBE). It is uncertain if the sexes differ for neuromuscular responses to ECC exercise and the ensuing RBE. Twenty-six young adults (13 females) performed 2 bouts (4 weeks apart) of 200 ECC maximal voluntary contractions (MVCs) of the dorsiflexors. Isometric (ISO) MVC torque and the ratio of ISO torque in response to low- versus high-frequency stimulation (10:100 Hz) were compared before and after (2–10 min and 2, 4, and 7 days) exercise. The decline in ECC and ISO MVC torque and the 10:100 Hz ratio following bout 1 did not differ between sexes (P > 0.05), with reductions from baseline of 31.5% ± 12.3%, 24.1% ± 15.4%, and 51.3% ± 12.2%, respectively. After bout 2, the 10:100 Hz ratio declined less (45.0% ± 12.4% from baseline) and ISO MVC torque recovered sooner compared with bout 1 but no differences between sexes were evident for the magnitude of the RBE (P > 0.05). These data suggest that fatigability with ECC exercise does not differ for the sexes and adaptations that mitigate impairments to calcium handling are independent of sex. Novelty: One bout of 200 maximal eccentric dorsiflexor contractions caused equivalent muscle fatigue and damage for females and males. The repeated bout effect observed after a second bout 4 weeks later also had no sex-related differences. Prolonged low-frequency force depression is promoted as an indirect measure of muscle damage in humans.
Collapse
Affiliation(s)
- Christina D. Bruce
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Luca Ruggiero
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Gabriel U. Dix
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Paul D. Cotton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chris J. McNeil
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
10
|
Morawetz D, Blank C, Koller A, Arvandi M, Siebert U, Schobersberger W. Sex-Related Differences After a Single Bout of Maximal Eccentric Exercise in Response to Acute Effects: A Systematic Review and Meta-analysis. J Strength Cond Res 2021; 34:2697-2707. [PMID: 30908366 DOI: 10.1519/jsc.0000000000002867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morawetz, D, Blank, C, Koller, A, Arvandi, M, Siebert, U, and Schobersberger, W. Sex-related differences after a single bout of maximal eccentric exercise in response to acute effects: a systematic review and meta-analysis. J Strength Cond Res 34(9): 2697-2707, 2020-The most prominent effects after unaccustomed eccentric exercise are muscle damage, muscle soreness, strength loss, and higher concentrations of muscle proteins in the plasma. The aim of this systematic review is to evaluate sex-related differences in these acute effects. A systematic literature search in MEDLINE following the PRISMA guidelines was performed. Inclusion criteria were the difference in absolute outcomes between sexes in eccentric muscle strength, strength loss after eccentric exercise, blood concentrations of creatine kinase (CK), and delayed onset muscle soreness (DOMS). Results for maximal eccentric torque and CK data were pooled using a random-effect meta-analysis. A meta-regression was conducted to explain heterogeneity. Based on the 23 included trials, men showed significantly higher absolute eccentric strength. No sex-related differences were detected when normalizing strength for body mass, cross-sectional area of the muscle, or fat-free mass. Women displayed a tendency toward greater relative strength loss immediately after exercise. The absolute CK concentrations of men were significantly higher after exercise-induced muscle damage. No significant difference was found between sexes in DOMS. Untrained men and women display similar responses in all measures of relative muscle strength and DOMS. Apart from the enzymatic activity after exercise and the levels of absolute eccentric torque, there is no evidence for sex-related differences immediately after eccentric exercise. Therefore, eccentric training might have the same impact on men and women. One potential sex difference with practical relevance would be the possible difference in fatigue pattern immediately after eccentric exercise.
Collapse
Affiliation(s)
- David Morawetz
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Cornelia Blank
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Arnold Koller
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Marjan Arvandi
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute for Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Uwe Siebert
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute for Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,Department of Health Policy and Management, Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and.,Program on Cardiovascular Research, Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
11
|
Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol 2021; 121:969-992. [PMID: 33420603 DOI: 10.1007/s00421-020-04566-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
There have been a multitude of reviews written on exercise-induced muscle damage (EIMD) and recovery. EIMD is a complex area of study as there are a host of factors such as sex, age, nutrition, fitness level, genetics and familiarity with exercise task, which influence the magnitude of performance decrement and the time course of recovery following EIMD. In addition, many reviews on recovery from exercise have ranged from the impact of nutritional strategies and recovery modalities, to complex mechanistic examination of various immune and endocrine signaling molecules. No one review can adequately address this broad array of study. Thus, in this present review, we aim to examine EIMD emanating from both endurance exercise and resistance exercise training in recreational and competitive athletes and shed light on nutritional strategies that can enhance and accelerate recovery following EIMD. In addition, the evaluation of EIMD and recovery from exercise is often complicated and conclusions often depend of the specific mode of assessment. As such, the focus of this review is also directed at the available techniques used to assess EIMD.
Collapse
|
12
|
Hinks A, Hess A, Debenham MIB, Chen J, Mazara N, Inkol KA, Cervone DT, Spriet LL, Dalton BH, Power GA. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect's protection of rate of torque and velocity development. Appl Physiol Nutr Metab 2020; 46:461-472. [PMID: 33125854 DOI: 10.1139/apnm-2020-0641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adam Hess
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mathew I B Debenham
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jackey Chen
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Mazara
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keaton A Inkol
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel T Cervone
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Dobbin N, Thorpe C, Highton J, Twist C. Sex-Related Changes in Physical Performance, Well-Being, and Neuromuscular Function of Elite Touch Players During a 4-Day International Tournament. Int J Sports Physiol Perform 2020; 15:1138-1146. [PMID: 32814309 DOI: 10.1123/ijspp.2019-0594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the within- and between-sexes physical performance, well-being, and neuromuscular function responses across a 4-day international touch rugby (Touch) tournament. METHODS Twenty-one males and 20 females completed measures of well-being (fatigue, soreness, sleep, mood, and stress) and neuromuscular function (countermovement jump height, peak power output, and peak force) during a 4-day tournament with internal, external, and perceptual loads recorded for all matches. RESULTS Relative and absolute total, low-intensity (females), and high-intensity distance were lower on day 3 (males and females) (effect size [ES] = -0.37 to -0.71) compared with day 1. Mean heart rate was possibly to most likely lower during the tournament (except day 2 males; ES = -0.36 to -0.74), whereas rating of perceived exertion-training load was consistently higher in females (ES = 0.02 to 0.83). The change in mean fatigue, soreness, and overall well-being was unclear to most likely lower (ES = -0.33 to -1.90) across the tournament for both sexes, with greater perceived fatigue and soreness in females on days 3 to 4 (ES = 0.39 to 0.78). Jump height and peak power output were possibly to most likely lower across days 2 to 4 (ES = -0.30 to -0.84), with greater reductions in females (ES = 0.21 to 0.66). Well-being, countermovement jump height, and peak force were associated with changes in external, internal, and perceptual measures of load across the tournament (η2 = -.37 to .39). CONCLUSIONS Elite Touch players experience reductions in well-being, neuromuscular function, and running performance across a 4-day tournament, with notable differences in fatigue and running between males and females, suggesting that sex-specific monitoring and intervention strategies are necessary.
Collapse
|
14
|
Davies RW, Carson BP, Jakeman PM. Sex Differences in the Temporal Recovery of Neuromuscular Function Following Resistance Training in Resistance Trained Men and Women 18 to 35 Years. Front Physiol 2018; 9:1480. [PMID: 30405436 PMCID: PMC6206044 DOI: 10.3389/fphys.2018.01480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
To investigate sex differences in the temporal recovery of neuromuscular function following resistance training (RT), eleven men and eight women 18-35 years completed a single RT bout (barbell back-squats, 80 % 1RM, 5 sets × 5 reps, 25 % duty cycle, then 1 set × max reps). Measures of muscle function (isometric, concentric, eccentric knee extensor strength, and countermovement jump (CMJ) height), serum creatine kinase activity (CK) and lower-body muscle pain were assessed before RT (0 h), +4 h, +24 h, +48 h, and +72 h post-RT. Data are mean % change from PRE (SD) and effect size (ω2, d). Men and women had similar RT-experience (men, 2.1 (0.8) years vs. women 2.4 (1.0) years, P = 0.746, and d = 0.3) and 1RM strength per kg lean mass (men, 1.9 (0.2) kg⋅kg-1 vs. women, 1.8 (0.3) kg⋅kg-1, P = 0.303, and d = 0.3). A 36 (12)% increase in lower-body muscle pain was reported following RT (P < 0.05, d > 0.9). There was an absence of any overt change in CK [+24 h, 74 (41) IU⋅L-1; pooled mean (SD)]. Decrements in knee extensor strength and CMJ height were observed +4 to +72 h for both men and women (P < 0.05, ω2 = 0.19-0.69). Sex differences were apparent for CMJ height (+24 h men, -10 (6)% vs. women, -20 (11)%, P < 0.001, and d = 1.8) and isokinetic concentric strength (+24 h men, -10 (13)% vs. women -25 (14)%, P = 0.006, and d = 1.8), with a more pronounced loss and prolonged recovery in women compared to men (e.g., CMJ + 72 h men, -3 (6)% vs. women, -13 (12)%, P = 0.051, and d = 1.1). We conclude that the different temporal recovery patterns between men and women are not explicable by differences in muscle strength, RT performance, experience, muscle damage or fatigability.
Collapse
Affiliation(s)
- Robert W Davies
- Department of Physical Education & Sports Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Brian P Carson
- Department of Physical Education & Sports Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Philip M Jakeman
- Department of Physical Education & Sports Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
16
|
McIntosh EI, Power GA, Dalton BH. The vestibulomyogenic balance response is elevated following high-intensity lengthening contractions of the lower limb. Neurosci Lett 2018; 675:120-126. [PMID: 29596981 DOI: 10.1016/j.neulet.2018.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
Abstract
The purpose was to investigate whether exercise-induced muscle weakness of the plantar and dorsiflexors through high-intensity lengthening contractions increases the vestibulomyogenic balance response. Nine males (∼25 years) participated in three experimental testing days to evaluate the vestibular control of standing balance and neuromuscular function of the plantar and dorsiflexors pre- and post (30 min, and 1 and 7 days) high-intensity lengthening plantar and dorsiflexions. To evaluate the vestibular-evoked balance response, participants stood quietly on a force plate while exposed to continuous, random electrical vestibular stimulation (EVS) for two 90-s trials. Relationships between EVS-antero-posterior (AP) forces and EVS-medial gastrocnemius electromyography (EMG) were estimated in the frequency domain (i.e., coherence). Weakness of the right plantar and dorsiflexors were assessed using maximal voluntary contraction (MVC) torque. The lengthening contractions induced a 13 and 24% reduction in plantar and dorsiflexor MVC torque, respectively (p < 0.05) of the exercised leg, which did not recover by 1 day post. The EVS-EMG coherence increased over a range of frequencies up to 7 days post compared to pre-lengthening contractions. Conversely, EVS-AP forces coherence exhibited limited changes. The greater EVS-EMG coherence post exercise-induced muscle weakness may be a compensatory mechanism to maintain the whole-body vestibular-evoked balance response when muscle strength is reduced.
Collapse
Affiliation(s)
- Emily I McIntosh
- Department of Human Physiology, University of Oregon, Eugene, United States; Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, United States; School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
17
|
Latella C, Hendy A, Vanderwesthuizen D, Teo WP. The modulation of corticospinal excitability and inhibition following acute resistance exercise in males and females. Eur J Sport Sci 2018; 18:984-993. [DOI: 10.1080/17461391.2018.1467489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Christopher Latella
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Ashlee Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Dan Vanderwesthuizen
- Clinical Exercise Science & Rehabilitation, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Footscray, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
18
|
Abstract
Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
19
|
Lee A, Baxter J, Eischer C, Gage M, Hunter S, Yoon T. Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscles. Eur J Appl Physiol 2017; 117:1119-1130. [DOI: 10.1007/s00421-017-3599-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
|
20
|
Hill EC, Housh TJ, Camic CL, Smith CM, Cochrane KC, Jenkins ND, Cramer JT, Schmidt RJ, Johnson GO. Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions. J Strength Cond Res 2016; 30:1743-51. [DOI: 10.1519/jsc.0000000000001266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Residual force enhancement in humans: Current evidence and unresolved issues. J Electromyogr Kinesiol 2015; 25:571-80. [DOI: 10.1016/j.jelekin.2015.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022] Open
|
22
|
Rankin P, Stevenson E, Cockburn E. The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur J Appl Physiol 2015; 115:1245-61. [PMID: 25673557 DOI: 10.1007/s00421-015-3121-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE The consumption of 500 ml milk following muscle damaging exercise can attenuate decreases in muscle functional capacity and increases in markers of muscle damage and soreness in males. There has been no similar research in female participants. Therefore, the aim of this study was to investigate the effects of milk consumption on exercise-induced muscle damage (EIMD) in males and females. METHODS Thirty-two team sport players (male n = 16; female n = 16) were randomly, but equally divided into four groups: male milk, male carbohydrate, female milk, and female carbohydrate. Immediately following muscle damaging exercise, participants consumed either 500 ml of milk or 500 ml of an energy-matched carbohydrate solution. Skeletal troponin I (sTnI), creatine kinase (CK), peak torque, counter movement jump height, 20 m sprint performance and passive and active soreness were recorded prior to and 24, 48 and 72 h post-EIMD. RESULTS For females, milk had a likely/very likely beneficial effect on attenuating losses in peak torque at 60°/s from baseline to 24, 48 and 72 h, and a likely beneficial effect in minimising decrements in sprint performance and soreness over 72 h. Milk was unlikely to have a negative effect on serum markers of damage from baseline to 48 and 72 h. For males, milk had an unclear effect on muscle function variables. Milk had a most likely/likely beneficial effect on limiting muscle soreness from baseline to 72 h, and a possible beneficial effect on attenuating increases in CK. The effect on sTnI was unlikely to be negative from baseline-72 h. Overall gender comparisons provided many unclear outcomes. However, female participants demonstrated smaller increases in sprint time, passive soreness, active soreness (non-dominant leg) and sTnI values. CONCLUSION Consumption of 500 ml of milk post-EIMD can limit decrements in muscle function in females, and limit increases in soreness and serum markers of muscle damage in females and males.
Collapse
Affiliation(s)
- P Rankin
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland,
| | | | | |
Collapse
|
23
|
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 2014; 210:768-89. [PMID: 24433272 DOI: 10.1111/apha.12234] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/29/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.
Collapse
Affiliation(s)
- S. K. Hunter
- Exercise Science Program; Department of Physical Therapy; Marquette University; Milwaukee WI USA
| |
Collapse
|