1
|
Georgiou GD, Antoniou K, Antoniou S, Michelekaki EA, Zare R, Ali Redha A, Prokopidis K, Christodoulides E, Clifford T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2024; 34:397-412. [PMID: 39032921 DOI: 10.1123/ijsnem.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Reza Zare
- Meshkat Sports Complex, Karaj, Iran
- Arses Sports Complex, Karaj, Iran
| | - Ali Ali Redha
- University of Exeter, Exeter, United Kingdom
- The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Tom Clifford
- Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Flores LJF, de Souza Campos F, Baumann L, Weber MG, Barazetti LK, Nampo FK, de Paula Ramos S. Photobiomodulation does not improve anaerobic performance in well-trained cyclists. Lasers Med Sci 2023; 38:134. [PMID: 37294341 DOI: 10.1007/s10103-023-03803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
To determine if photobiomodulation (PBM) has ergogenic effects on the anaerobic performance of well-trained cyclists. Fifteen healthy male road or mountain bike cyclists participated in this randomized, double-blinded, placebo-controlled, crossover study. Athletes were randomly assigned to receive photobiomodulation (630 nm, 4.6 J/cm2, 6 J per point, 16 points, PBM session) or placebo intervention (PLA session) in the first session. The athletes then performed a 30-s Wingate test to determine mean and peak average power, relative power, mean and peak velocity, mean and peak RPM, fatigue index, total distance, time to peak power, explosive strength, and power drop. After 48 h, athletes returned to the laboratory for the crossover intervention. The repeated-measures ANOVA test followed by Bonferroni post hoc test or Friedman test with Dunn's post hoc test (p < 0.05), and Cohen's d statistic were used for comparisons. Performance in the Wingate test was not significantly different (p > 0.05) between PBM and PLA sessions for any variable. Only a small effect size was detected for time to peak power (-0.40; 1.11 to 0.31) and explosive strength (0.38; -0.34 to 1.09). We conclude that irradiation with red light, under a low energy density, does not promote ergogenic effects on the anaerobic performance of cycling athletes.
Collapse
Affiliation(s)
| | | | - Lucielle Baumann
- State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | - Lilian Keila Barazetti
- Department of Physical Education, State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | - Solange de Paula Ramos
- Study Group in Tissue Regeneration, Adaptation, and Repair, State University of Londrina, Londrina, Brazil.
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR 445, km 380, Campus Universitário, Bairro Porta de Versalhes I, Londrina, Paraná, CEP 86055-990, Brazil.
| |
Collapse
|
3
|
Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic-Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092490. [PMID: 32824885 PMCID: PMC7551186 DOI: 10.3390/nu12092490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beta-alanine supplementation (BA) has a positive impact on physical performance. However, evidence showing a benefit of this amino acid in aerobic-anaerobic transition zones is scarce and the results controversial. The aim of this systematic review and meta-analysis is to analyze the effects of BA supplementation on physical performance in aerobic-anaerobic transition zones. At the same time, the effect of different dosages and durations of BA supplementation were identified. The search was designed in accordance with the PRISMA® guidelines for systematic reviews and meta-analyses and performed in Web of Science (WOS), Scopus, SPORTDiscus, PubMed, and MEDLINE between 2010 and 2020. The methodological quality and risk of bias were evaluated with the Cochrane Collaboration tool. The main variables were the Time Trial Test (TTT) and Time to Exhaustion (TTE) tests, the latter separated into the Limited Time Test (LTT) and Limited Distance Test (LDT). The analysis was carried out with a pooled standardized mean difference (SMD) through Hedges' g test (95% CI). Nineteen studies were included in the systematic review and meta-analysis, revealing a small effect for time in the TTT (SMD, -0.36; 95% CI, -0.87-0.16; I2 = 59%; p = 0.010), a small effect for LTT (SMD, 0.25; 95% CI, -0.01-0.51; I2 = 0%; p = 0.53), and a large effect for LDT (SMD, 4.27; 95% CI, -0.25-8.79; I2 = 94%; p = 0.00001). BA supplementation showed small effects on physical performance in aerobic-anaerobic transition zones. Evidence on acute supplementation is scarce (one study); therefore, exploration of acute supplementation with different dosages and formats on physical performance in aerobic-anaerobic transition zones is needed.
Collapse
|
4
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
5
|
Norberto MS, Barbieri RA, Bertucci DR, Gobbi RB, Campos EZ, Zagatto AM, De Freitas EC, Papoti M. Beta alanine supplementation effects on metabolic contribution and swimming performance. J Int Soc Sports Nutr 2020; 17:40. [PMID: 32711541 PMCID: PMC7382077 DOI: 10.1186/s12970-020-00365-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Investigations of β-alanine supplementation shows effects on metabolic (aerobic and anaerobic) participation and performance on swimming by a possible blood acidosis buffering. Considering this background, the objective of the present study was to analyze the effects of β-alanine supplementation on metabolic contribution and performance during 400-m swim. METHODS Thirteen competitive swimmers underwent a 6-week, double-blind placebo-controlled study, ingesting 4.8 g.day- 1 of β-alanine or placebo. Before and after the supplementation period, the total anaerobic contribution (TAn) and 30-s all-out tethered swimming effort (30TS) were assessed. Anaerobic alactic (AnAl) and lactic energy (AnLa) was assumed as the fast component of excess post-exercise oxygen consumption and net blood lactate accumulation during exercise (∆[La-]), respectively. Aerobic contribution (Aer) was determined by the difference between total energy demand and TAn. In addition to conventional statistical analysis (Repeated measures ANOVA; p > 0.05), a Bayesian repeated measures ANOVA was used to evidence the effect probability (BFincl). RESULTS No differences and effects were found between groups, indicating no supplementation effects. Repeated measures ANOVA, with confirmation of effect, was indicate reduce in ∆Lactate (p: 0.001; BFincl: 25.02); absolute AnLa (p: 0.002; BFincl: 12.61), fatigue index (p > 0.001; BFincl: 63.25) and total anaerobic participation (p: 0.008; BFincl: 4.89). CONCLUSIONS Thus, the results demonstrated that all changes presented were evidenced as a result of exposure to the training period and β-alanine supplementation doesn't affect metabolic contribution and performance during 400-m freestyle.
Collapse
Affiliation(s)
- Matheus Silva Norberto
- University of São Paulo, Medicine University of Ribeirão Preto (FMRP-USP), Ribeirão Preto, São Paulo Brazil
- University of São Paulo, School of Physical Education and sport of Ribeirão Preto (EEFERP-USP), Ribeirão Preto, São Paulo Brazil
| | - Ricardo Augusto Barbieri
- University of São Paulo, School of Physical Education and sport of Ribeirão Preto (EEFERP-USP), Ribeirão Preto, São Paulo Brazil
- Estácio University, Ribeirão Preto, São Paulo Brazil
| | | | - Ronaldo Bucken Gobbi
- University of São Paulo, School of Physical Education and sport of Ribeirão Preto (EEFERP-USP), Ribeirão Preto, São Paulo Brazil
| | - Eduardo Zapaterra Campos
- Department of Physical Education, Federal University of Pernambuco, (UFPE), Recife, Pernambuco Brazil
| | | | - Ellen Cristini De Freitas
- University of São Paulo, School of Physical Education and sport of Ribeirão Preto (EEFERP-USP), Ribeirão Preto, São Paulo Brazil
| | - Marcelo Papoti
- University of São Paulo, Medicine University of Ribeirão Preto (FMRP-USP), Ribeirão Preto, São Paulo Brazil
- University of São Paulo, School of Physical Education and sport of Ribeirão Preto (EEFERP-USP), Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
6
|
Stefani GP, Capalonga L, da Silva LR, Dal Lago P. β-Alanine and l-histidine supplementation associated with combined training increased functional capacity and maximum strength in heart failure rats. Exp Physiol 2020; 105:831-841. [PMID: 32125738 DOI: 10.1113/ep088327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/28/2020] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the central question of the study? Does β-alanine with l-histidine supplementation associated with endurance and strength training improve echocardiographic parameters, functional capacity, and maximum strength in rats with chronic heart failure? What is the main finding and its importance? β-Alanine with l-histidine supplementation associated with endurance and strength training increased functional capacity and maximum strength through increasing exercise capacity peripherally but did not affect echocardiographic parameters in rats with chronic heart failure. Combined training (CT) has been associated with positive responses in the clinical status of patients with chronic heart failure (CHF). Other non-pharmacological tools, such as amino acid supplementation, may further enhance its adaptation. However, the effects of β-alanine and l-histidine supplementation in CHF remain unclear. In the present study, the aim was to test whether supplementing carnosine precursors with CT could give improved responses in the functional capacity and echocardiographic variables of rats with CHF. Twenty-four Wistar rats, were submitted to myocardial infarction and allocated to three groups: animals with CHF kept in sedentary conditions (SED, n = 8), animals with CHF submitted to CT in strength and aerobic exercise supplemented with placebo (CT-P, n = 8) and animals with CHF submitted to CT in strength and aerobic exercise supplemented with β-alanine and l-histidine (CT-S, n = 8). The trained animals were submitted to a strength protocol three times per week with intensity of 65-75% of one repetition maximum test. Aerobic training was conducted two times per week (50 min, 15 m min-1 ). The supplemented group received β-alanine and l-histidine orally (each 250 mg kg-1 day-1 ). No changes in echocardiographic and morphological parameters were found among the groups (P > 0.05). Functional capacity, Δ V ̇ O 2 max and maximum strength were higher in CT-P than in SED and even higher in CT-S than in CT-P (P < 0.01). The CT was able to improve functional capacity, but the supplementation was shown to enhance these parameters even further in the CHF rats. We conclude that the increase in functional capacity and strength gained through CT and supplementation were associated with the improvement in peripheral parameters with no changes in cardiac variables.
Collapse
Affiliation(s)
- Giuseppe Potrick Stefani
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil
| | - Lucas Capalonga
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lucas Ribeiro da Silva
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), RS, Brazil
| |
Collapse
|
7
|
Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on “secondary” physiological determinants. Nutrition 2019; 60:241-251. [DOI: 10.1016/j.nut.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/29/2018] [Accepted: 10/07/2018] [Indexed: 01/10/2023]
|
8
|
Brisola GMP, Zagatto AM. Ergogenic Effects of β-Alanine Supplementation on Different Sports Modalities: Strong Evidence or Only Incipient Findings? J Strength Cond Res 2018; 33:253-282. [PMID: 30431532 DOI: 10.1519/jsc.0000000000002925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brisola, GMP and Zagatto, AM. Ergogenic effects of β-alanine supplementation on different sports modalities: strong evidence or only incipient findings? J Strength Cond Res 33(1): 253-282, 2019-β-Alanine supplementation is a popular nutritional ergogenic aid among the sports community. Due to its efficacy, already proven in the literature, to increase the intramuscular carnosine content (β-alanyl-L-histidine), whose main function is intramuscular buffering, β-alanine supplementation has become a nutritional strategy to improve performance, mainly in high-intensity efforts. However, although many studies present evidence of the efficacy of β-alanine supplementation in high-intensity efforts, discrepancies in outcomes are still present and the performance enhancing effects seem to be related to the specificities of each sport discipline, making it difficult for athletes/coaches to interpret the efficacy of β-alanine supplementation. Thus, this study carried out a review of the literature on this topic and summarized, analyzed, and critically discussed the findings with the objective of clarifying the current evidence found in the literature on different types of efforts and sport modalities. The present review revealed that inconsistencies are still found in aerobic parameters determined in incremental tests, except for physical working capacity at the neuromuscular fatigue threshold. Inconsistencies are also found for strength exercises and intermittent high-intensity efforts, whereas in supramaximal continuous mode intermittent exercise, the beneficial evidence is strong. In sports modalities, the evidence should be analyzed separately for each sporting modality. Thus, sports modalities that have strong evidence of the ergogenic effects of β-alanine supplementation are: cycling race of 4 km, rowing race of 2,000 m, swimming race of 100 and 200 m, combat modalities, and water polo. Finally, there is some evidence of slight additional effects on physical performance from cosupplementation with sodium bicarbonate.
Collapse
Affiliation(s)
- Gabriel M P Brisola
- Department of Physical Education, Post-Graduate Program in Movement Sciences, School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil.,Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Alessandro M Zagatto
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil
| |
Collapse
|
9
|
Brisola GMP, Redkva PE, Pessôa Filho DM, Papoti M, Zagatto AM. Effects of 4 weeks of β-alanine supplementation on aerobic fitness in water polo players. PLoS One 2018; 13:e0205129. [PMID: 30307991 PMCID: PMC6181339 DOI: 10.1371/journal.pone.0205129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
The purpose of the present study was to investigate the ergogenic effects of 4 weeks of β-alanine supplementation on peak oxygen uptake ( V˙O2peak) and force associated with V˙O2peak ( FV˙O2peak) during a tethered swimming graded exercise test, and a three-minute all-out effort (3minALL-OUT) in water polo players. Twenty-two male national competitive level water polo players were randomly assigned to receive either 4 weeks of β-alanine (n = 11) or a placebo (n = 11) (i.e., 4.8 g·day-1 for 10 days, then6.4 g·day-1 for 18 days, resulting in 163.2 g over 28 days). The participants performed the TSGET and 3minALL-OUT before and after the supplementation period. There were no significant interaction effects between-groups for any variable, however, the magnitude-based inferences analyses showed a possibly beneficial effect (74%) of β-alanine supplementation on FV˙O2peak compared to placebo treatment (Δ% [post–pre] for Placebo group = -5.2%; Δ% [post–pre] for β-alanine group = +0.7%). Only the β-alanine group presented a significant reduction in V˙O2peak expressed in absolute values (PRE = 3.3±0.6L·min-1; POST = 3.0±0.4L·min-1; p = .021). Similarly, only the β-alanine group presented a significant increase in critical force (PRE = 51.2±10.4N; POST = 56.5±13.1N; p = .044) and a reduction in the curvature constant parameter (W'; PRE = 2998.0±1103.7N·s; POST = 2224.6±1058.9N·s; p = .049). Thus, we can conclude that 4 weeks of β-alanine supplementation presented mixed results in water polo players, indicating that this nutritional strategy may not be effective in improving parameters of the TSGET and 3minALL-OUT .
Collapse
Affiliation(s)
- Gabriel Motta Pinheiro Brisola
- Post-Graduate Program in Movement Sciences, Sao Paulo State University—UNESP, Bauru, Brazil
- Laboratory of Physiology and Sport Performance (LAFIDE)—Sao Paulo State University—UNESP, School of Sciences, Department of Physical Education, Bauru, Brazil
| | - Paulo Eduardo Redkva
- Post-Graduate Program in Movement Sciences, Sao Paulo State University—UNESP, Bauru, Brazil
- Laboratory of Physiology and Sport Performance (LAFIDE)—Sao Paulo State University—UNESP, School of Sciences, Department of Physical Education, Bauru, Brazil
| | | | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE)—Sao Paulo State University—UNESP, School of Sciences, Department of Physical Education, Bauru, Brazil
- Sao Paulo State University—UNESP, School of Sciences, Department of Physical Education, Bauru, Brazil
- * E-mail:
| |
Collapse
|
10
|
da Silva RP, de Oliveira LF, Saunders B, de Andrade Kratz C, de Salles Painelli V, da Eira Silva V, Marins JCB, Franchini E, Gualano B, Artioli GG. Effects of β-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids 2018; 51:83-96. [PMID: 30182286 DOI: 10.1007/s00726-018-2643-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The effects of β-alanine (BA) and sodium bicarbonate (SB) on energy metabolism during work-matched high-intensity exercise and cycling time-trial performance were examined in 71 male cyclists. They were randomised to receive BA + placebo (BA, n = 18), placebo + SB (SB, n = 17), BA + SB (BASB, n = 19), or placebo + placebo (PLA, n = 18). BA was supplemented for 28 days (6.4 g day-1) and SB (0.3 g kg-1) ingested 60 min before exercise on the post-supplementation trial. Dextrose and calcium carbonate were placebos for BA and SB, respectively. Before (PRE) and after (POST) supplementation, participants performed a high-intensity intermittent cycling test (HICT-110%) consisting of four 60-s bouts at 110% of their maximal power output (60-s rest between bouts). The estimated contribution of the energy systems was calculated for each bout in 39 of the participants (BA: n = 9; SB: n = 10; BASB: n = 10, PLA: n = 10). Ten minutes after HICT-110%, cycling performance was determined in a 30-kJ time-trial test in all participants. Both groups receiving SB increased estimated glycolytic contribution in the overall HICT-110%, which approached significance (SB: + 23%, p = 0.068 vs. PRE; BASB: + 18%, p = 0.059 vs. PRE). No effects of supplementation were observed for the estimated oxidative and ATP-PCr systems. Time to complete 30 kJ was not significantly changed by any of the treatments, although a trend toward significance was shown in the BASB group (p = 0.06). We conclude that SB, but not BA, increases the estimated glycolytic contribution to high-intensity intermittent exercise when total work done is controlled and that BA and SB, either alone or in combination, do not improve short-duration cycling time-trial performance.
Collapse
Affiliation(s)
- Rafael Pires da Silva
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil
| | - Luana Farias de Oliveira
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil
| | - Bryan Saunders
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil.,Institute of Orthopedics and Traumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Caroline de Andrade Kratz
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil
| | - Vitor de Salles Painelli
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil
| | - Vinicius da Eira Silva
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil
| | | | - Emerson Franchini
- Department of Sport, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,University of Sao Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Guilherme Giannini Artioli
- Rheumatology Division, Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil. .,University of Sao Paulo, São Paulo, SP, Brazil. .,, Av. Prof Mello Moraes 65 Butanta, São Paulo, SP, 05508-030, Brazil.
| |
Collapse
|