1
|
Jiang N, Wang Z, Guo X, Peng Z, He Y, Wang Q, Wu H, Cui Y. Hepatic Runx1t1 improves body fat index after endurance exercise in obese mice. Sci Rep 2023; 13:19427. [PMID: 37940636 PMCID: PMC10632374 DOI: 10.1038/s41598-023-46302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Endurance exercise could attenuate obesity induced by high fat diet (HFD). Thus, the purpose of this study was to explore the crucial targets that play key roles in the improvement of body fat index (BFI) in obese mice by endurance exercise. Firstly, we constructed murine obesity models: High fat diet control (HFD) group, HFD exercise (HFE) group, normal chow diet control (NC) group, and normal chow diet exercise (NE) group. Next, we identified the BFI improvement related genes using differential gene analysis, and investigated these genes' functional pathways using functional enrichment analysis. The qRT-PCR and western blot assays were used to determine the gene expression and protein expression, respectively. Gene set enrichment analysis was used to explore the potential pathways associated with endurance exercise in obese mice and Mitochondrial respiratory control ratio (RCR) assay was applied to determine the RCR in the liver tissues of mice. We discovered that endurance exercise remarkably reduced the body weights and BFI of HFD-induced obese mice. Runx1t1 was related to the improvement of BFI by endurance exercise in HFD-induced obese mice. Runx1t1 mRNA and protein levels in liver tissues were observably decreased in HFD mice compared to mice in HFE, NC and NE groups. Moreover, Glucagon signaling pathway that was associated with mitochondrial function was significantly activated in HFE mice. The Runx1t1 expression exhibited an observable negative correlation with Acaca in HFD mice. Moreover, the mitochondrial RCR level was significantly increased in HFE mice than that in HFD mice. In HFD-induced obese mice, Runx1t1 was implicated in the improvement of BFI via endurance exercise. Endurance exercise could improve mitochondrial dysfunction in obese mice by activating the Runx1t1.
Collapse
Affiliation(s)
- Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zhe Wang
- Department of Basic Teaching of Military Common Subjects, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Xiangying Guo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zifu Peng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yimin He
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Qian Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Huaduo Wu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Hexi District, Tianjin, 300061, China.
| |
Collapse
|
2
|
Stine JG, Romeo S. Sweating it out: How physical activity can combat high genetic risk for nonalcoholic fatty liver disease. Liver Int 2023; 43:1623-1625. [PMID: 37452506 PMCID: PMC10542965 DOI: 10.1111/liv.15642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Penn State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University-College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, Penn State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
- Unit of Clinical Nutrition, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
3
|
Haghshenas R, Aftabi Y, Doaei S, Gholamalizadeh M. Synergistic effect of endurance training and nettle leaf extract on the IDO1-KYN-AHR pathway homeostasis and inhibiting of liver toxicity in rats with STZ-induced diabetes. Front Endocrinol (Lausanne) 2023; 14:1071424. [PMID: 37305057 PMCID: PMC10251405 DOI: 10.3389/fendo.2023.1071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diabetes adversely affects a number of hepatic molecular pathways, including the kynurenine (KYN) pathway. KYN is produced by indoleamine 2,3-dioxygenase (IDO) and activates the aryl hydrocarbon receptor (AHR). This study evaluated the effect of endurance training (EndTr) and nettle leaf extract (NLE) on the IDO1-KYN-AHR pathway in the livers of rats with streptozotocin-induced diabetes. Methods We divided 48 rats into six groups: controls (Ct), treated with EndTr (EndTr), diabetes-induced (D), D treated with NLE (D + NLE), D treated with EndTr (D + EnTr), and D treated with EndTr and NLE (D + EndTr + NLE). EndTr, D + EnTr, and D + EndTr + NLE groups were subjected to training with running on treadmill for 8 weeks, 5 days per week, 25 min in first session to 59 min at last session with intensity of 55% to 65% VO2max. Using real-time PCR gene (Ahr, Cyp1a1, and Ido1) expressions and ELISA, malondialdehyde (MDA) and protein (IDO1, AHR, and CYP1A1) levels were determined in the liver samples. Results A significant three-way interaction of exercise, nettle, and diabetes was observed on the all variables (P< 0.001). In particular, significant increases in blood glucose level (BGL), in gene and protein expression, and in MDA and KYN levels were observed in the liver samples of the D group versus the Ct group (P< 0.05). BGL and liver MDA levels were significantly lower in the D + EndTr and D + NLE groups than that in the D group. However, the D + EndTr + NLE group showed a more significant decrease in these factors (P< 0.05). In addition, liver KYN levels were significantly lower in the EndTr group compared with that in the Ct group as well as in the D + EndTr + NLE and D + EndTr groups compared with that in the D groups (P< 0.05). Whereas both the EndTr and D + NLE groups showed lower Ahr expression and AHR level compared with the Ct and D groups, respectively (P< 0.05), the D + EndTr + NLE group showed a higher significant reduction in the AHR level than the D group (P< 0.05). The Cyp1a1 expression and IDO1 level significantly decreased only in the D + EndTr + NLE group compared to that in the D group (P< 0.05). Conclusion Overall, this study showed that the combination of EndTr and NLE may synergistically restore the imbalanced IDO1-KYN-AHR pathway in diabetic liver.
Collapse
Affiliation(s)
- Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saied Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Melo L, Hagar A, Klaunig J. Gene expression signature of exercise and change of diet on non-alcoholic fatty liver disease in mice. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Non-alcoholic fatty liver diseases (NAFLD) are particularly prevalent in the general Western adult population, with around one third of the population suffering from the disease. Evidence shows that NAFLD is associated with metabolic syndromes such as obesity, insulin resistance, and hypertension. Currently, the sole therapy for NAFLD involves exercise intervention. Studies showed that, with and without weight loss, exercise interventions produced a significant cutback in intrahepatic lipid content in humans, but better controlled studies that can investigate the cellular and molecular mechanisms are still lacking. In the current study we perform RNA sequencing analysis on liver samples from C57BL/6 mice submitted to aerobic exercise and diet interventions that are human-translatable and determine the genetic expression signature of exercise in the NAFLD onset. We show that aerobic exercise affects genes and pathways related to liver metabolism, muscle contraction and relaxation, immune response and inflammation, and development of liver cancer, counteracting non-alcoholic steatohepatitis and hepatocellular carcinoma development. While genes and pathways implicating immune response are activated by aerobic exercise in all interventions, the most effective intervention in terms of improvement of NASH is the combination of aerobic exercise with change of diet.
Collapse
Affiliation(s)
- L. Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, 2719E 10th St, Indiana University, Bloomington, IN, 47405, USA
- University of Pittsburgh Medical School, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - A. Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, 1020 E Kirkwood Ave, Bloomington, IN 47405, USA
- Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - J.E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, 2719E 10th St, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
5
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
6
|
Melo L, Bilici M, Hagar A, Klaunig JE. The effect of endurance training on non-alcoholic fatty liver disease in mice. Physiol Rep 2021; 9:e14926. [PMID: 34342164 PMCID: PMC8329433 DOI: 10.14814/phy2.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of non-alcoholic fatty liver disease (NAFLD). Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified; however, the specific cellular and molecular pathways modified by exercise in the steatotic liver remain unresolved. In this study, we show hepatic gene expression, and the structure, characteristics, and clinical differences between sedentary and exercised mice, by an endurance exercise model with wheels with a controlled velocity that allows for the quantification of a human-relevant endurance "dosage," after exposure to regular and high-fat diet. Chronic exercise modified the transcription of hepatic genes related to liver nuclear receptors, cell growth, fibrosis, inflammation, and oxidative stress, and decreased the amount of lipid accumulation in the liver. Moreover, the combination of endurance training with the change in diet differentially modified the genetic expression of the biomarkers relative to the separate interventions. Even though exercise by itself showed counteract NAFLD development, the combined intervention was sufficient to convert the structure and clinical aspects of the liver from steatotic to healthy. Given our findings, the combination of endurance exercise and change in diet should be considered a therapeutic option for NASH.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and PathologyDepartment of Environmental and Occupational HealthIndiana School of Public HealthIndiana UniversityBloomingtonINUSA
| | - Merve Bilici
- Laboratory of Investigative Toxicology and PathologyDepartment of Environmental and Occupational HealthIndiana School of Public HealthIndiana UniversityBloomingtonINUSA
| | - Amit Hagar
- History and Philosophy of Science and Medicine DepartmentIndiana UniversityBloomingtonINUSA
- Intelligent Systems Engineering DepartmentIndiana UniversityBloomingtonINUSA
| | - James E. Klaunig
- Laboratory of Investigative Toxicology and PathologyDepartment of Environmental and Occupational HealthIndiana School of Public HealthIndiana UniversityBloomingtonINUSA
| |
Collapse
|
7
|
Abstract
Gestational Diabetes Mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy. Regular exercise is important for a healthy pregnancy and can lower the risk of developing GDM. For women with GDM, exercise is safe and can affect the pregnancy outcomes beneficially. A single exercise bout increases skeletal muscle glucose uptake, minimizing hyperglycemia. Regular exercise training promotes mitochondrial biogenesis, improves oxidative capacity, enhances insulin sensitivity and vascular function, and reduces systemic inflammation. Exercise may also aid in lowering the insulin dose in insulin-treated pregnant women. Despite these benefits, women with GDM are usually inactive or have poor participation in exercise training. Attractive individualized exercise programs that will increase adherence and result in optimal maternal and offspring benefits are needed. However, as women with GDM have a unique physiology, more attention is required during exercise prescription. This review (i) summarizes the cardiovascular and metabolic adaptations due to pregnancy and outlines the mechanisms through which exercise can improve glycemic control and overall health in insulin resistance states, (ii) presents the pathophysiological alterations induced by GDM that affect exercise responses, and (iii) highlights cardinal points of an exercise program for women with GDM.
Collapse
|