1
|
Malatesta M, Tabaracci G, Pellicciari C. Low-Dose Ozone as a Eustress Inducer: Experimental Evidence of the Molecular Mechanisms Accounting for Its Therapeutic Action. Int J Mol Sci 2024; 25:12657. [PMID: 39684369 DOI: 10.3390/ijms252312657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Ozone (O3) is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of 20th century and is currently based on the application of low doses, inducing moderate oxidative stress that stimulates the antioxidant cellular defences without causing cell damage. In recent decades, experimental investigations allowed the establishment of some basic mechanisms accounting for the therapeutic effects of eustress-inducing low-dose O3. In this review, special attention was given to the impact of O3 administration on the cell oxidant-antioxidant status, O3 anti-inflammatory and analgesic properties, efficacy in improving tissue regeneration, and potential anticancer action. Low O3 concentrations proved to drive the cell antioxidant response mainly by activating nuclear factor erythroid 2-related factor 2. The anti-inflammatory effect relies on the downregulation of pro-inflammatory factors and the modulation of cytokine secretion. The painkilling action is related to anti-inflammatory processes, inhibition of apoptosis and autophagy, and modulation of pain receptors. The regenerative potential depends on antioxidant, anti-inflammatory, anti-apoptotic, and pro-proliferative capabilities, as well as fibroblast activation. Finally, the anticancer potential is based on oxidant and anti-inflammatory properties, as well as the inhibition of cell proliferation, invasion, and migration and the induction of apoptosis.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | | | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Bin Hassan SA. Tooth Sensitivity Following Hydrogen Peroxide Bleaching With and Without Ozone: A Randomized Controlled Trial: Tooth Sensitivity Following H 2O 2 Versus H 2O 2/Ozone Bleaching. Pain Res Manag 2024; 2024:2695533. [PMID: 39512891 PMCID: PMC11540894 DOI: 10.1155/2024/2695533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Aims: The aim of this investigation was to assess bleaching sensitivity following bleaching using either 38% H2O2 only or 38% H2O2 followed by ozone application. Methods: In this randomized controlled clinical investigation, 80 participants (40 females and 40 males) were randomly assigned to two groups (n = 40 each; 20 females and 20 males). The upper anterior teeth were bleached by 38% H2O2 for 20 min followed by ozone application for 60 s (healOzone X4, KaVo Dental, Biberach, Germany) in Group 1 (test group). Meanwhile, the bleaching protocol in Group 2 (controls) included the application of just 38% H2O2 for 20 min. Tooth sensitivity before and after bleaching was reported by the participants using a visual analog scale (VAS) from 0 to 10. Mann-Whitney U test, Wilcoxon signed-rank test, and regression analysis were used to analyze the data. Significant statistical outcomes were identified at p < 0.05. Results: Bleaching sensitivity was reported following both tested bleaching protocols (p < 0.001). However, less bleaching sensitivity was reported when ozone was applied for 60 s after bleaching with 38% H2O2 (p < 0.001). Female participants reported more bleaching sensitivity regardless the applied bleaching protocol (p < 0.05). Conclusions: Bleaching protocols with 38% hydrogen peroxide were associated with less bleaching sensitivity when followed by ozone application on the teeth.
Collapse
Affiliation(s)
- Saeed Awod Bin Hassan
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Zhang Y, Gong J, Hu X, He L, Lin Y, Zhang J, Meng X, Zhang Y, Mo J, Day DB, Xiang J. Glycerophospholipid metabolism changes association with ozone exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134870. [PMID: 38876019 DOI: 10.1016/j.jhazmat.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.
Collapse
Affiliation(s)
- Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| | - Xinyan Hu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- College of Health, Lehigh University, Bethlehem, PA 19019, United States; Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Yan Lin
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Junfeng Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- School of Public Health, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Sun R, Zhang J, Chen X, Deng Y, Gou J, Yin T, He H, Tang X, Ni X, Yang L, Zhang Y. An adaptive drug-releasing contact lens for personalized treatment of ocular infections and injuries. J Control Release 2024; 369:114-127. [PMID: 38521167 DOI: 10.1016/j.jconrel.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Li Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
5
|
Al-Omiri MK, Alqahtani NM, Alahmari NM, Hassan RA, Al Nazeh AA, Lynch E. Treatment of symptomatic, deep, almost cariously exposed lesions using ozone. Sci Rep 2021; 11:11166. [PMID: 34045632 PMCID: PMC8159964 DOI: 10.1038/s41598-021-90824-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of this controlled randomized crossover study was to assess post-treatment pain and the need for root canal treatment after the use of a traditional caries removal method followed by restoration, or after an ozone method of more conservatively managing the deep caries and a restoration. 84 participants (42 males and 42 females, mean age ± SD = 23.9 ± 2.0 years) were randomly allocated to receive either a traditional (n = 42, 21 males and 21 females) or ozone (n = 42, 21 males and 21 females) method. The ozone method only differed from the traditional method by leaving the deep leathery caries on the pulpal floor and then treating this with 20 s of ozone from the healozone X4 (Curozone, Germany). All caries was removed in the traditional group. A conventional glass ionomer cement (Riva Self Cure High Viscosity, SDI, Australia) was placed followed by a bonded composite resin restoration (Filtek Z250 Universal Restorative, 3 M ESPE, USA) in each cavity. The visual analogue scale was used to assess pain scores before treatment and after 24 h. The participants were then followed up for 2 years to assess the need for root canal treatment. Statistical significance levels were set at α ≤ .05. Both groups were associated with significant reduction of pain scores 24 h after treatment (p < .0001). The ozone treatment was associated with less pain 24 h after treatment (p < .0001) and less need for root canal treatment (p = .014), after 2 years follow up, than the conventional treatment. In conclusion, treatment of symptomatic, deep carious lesions by ozone following partial removal of caries was accompanied with less pain and occurrence of RCT after treatment compared to traditional complete caries removal.
Collapse
Affiliation(s)
- Mahmoud K Al-Omiri
- Department of Prosthodontics, School of Dentistry, University of Jordan, Queen Rania Street, Amman, 11942, Jordan.
- Department of Prosthodontics, The City of London Dental School, Canada Water, Lower Road, London, UK.
| | - Nasser M Alqahtani
- Department of Prosthodontics, College of Dentistry, King Khalid University, Asir-Abha, Saudi Arabia
| | - Nasser M Alahmari
- Department of Prosthodontics, College of Dentistry, King Khalid University, Asir-Abha, Saudi Arabia
| | - Raed Abul Hassan
- Faculty of Allied Medical Sciences, The Royal University for Medical Sciences, Amman, Jordan
| | - Abdullah A Al Nazeh
- Department of Pediatric Dentistry and Orthodontics Sciences, College of Dentistry, King Khalid University, Asir-Abha, Saudi Arabia
| | - Edward Lynch
- School of Dental Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
6
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|
7
|
Hu X, He L, Zhang J, Qiu X, Zhang Y, Mo J, Day DB, Xiang J, Gong J. Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114503. [PMID: 32304951 DOI: 10.1016/j.envpol.2020.114503] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollutants has been associated with respiratory and cardiovascular mortality, but the underlying molecular mechanisms remain inadequately understood. We aimed to examine molecular-level inflammatory and oxidative stress responses to personal air pollutant exposure. Fifty-three healthy adults aged 22-52 were measured three times for their blood inflammatory cytokines and urinary malondialdehyde (MDA, an oxidative stress biomarker) within 2 consecutive months. Pollutant concentrations monitored indoors and outdoors were combined with the time-activity data to calculate personal O3, PM2.5, NO2, and SO2 exposures averaged over 12 h, 24 h, 1 week, and 2 weeks, respectively, prior to biospecimen collection. Inflammatory cytokines and MDA were associated with pollutant exposures using linear mixed-effects models controlling for various covariates. After adjusting for a co-pollutant, we found that concentrations of proinflammatory cytokines were significantly and negatively associated with 12-h O3 exposures and significantly but positively associated with 2-week O3 exposures. We also found significant and positive associations of proinflammatory cytokines with 12-h and 24-h NO2 exposures, respectively. However, we did not find clear associations of PM2.5 and SO2 exposure with proinflammatory cytokines and with MDA. The removal of an O3-generating electrostatic precipitator in the mechanical ventilation systems of the offices and residences of the subjects was associated with significant decreases in IL-1β, IL-2, IL-6, IL-8, IL-17A, and TNF-α. These findings suggest that exposure to O3 for different time durations may affect systemic inflammatory responses in different ways.
Collapse
Affiliation(s)
- Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States; Duke Global Health Institute, Duke University, Durham, NC, 27708, United States
| | - Junfeng Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China; Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States; Duke Global Health Institute, Duke University, Durham, NC, 27708, United States; Duke Kunshan University, Jiangsu, 215316, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, 98121, United States
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion. Food Chem Toxicol 2020; 143:111533. [PMID: 32645464 DOI: 10.1016/j.fct.2020.111533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metals and is harmful to human health. The liver is considered as a major target organ for Pb poisoning. Although probiotics have been shown to alleviate liver injury, the protective effect of Lactobacillus plantarum LP33 (LP33) against Pb-induced hepatotoxicity remains unclear. In order to explore the hepatoprotective effect of LP33, LP33 was administered to Pb-intoxicated Sprague-Dawley rats once daily by oral gavage for 8 weeks. The present results showed that LP33 supplementation alleviated liver injury, and inhibited oxidative stress and inflammation in Pb-exposed rats. Treatment with LP33 also promoted the phosphorylation of adenosine monophosphate-activated protein kinase and protein kinase B, activated nuclear factor erythroid 2-related factor 2 signaling and inhibited the activation of nuclear factor-κB signaling in liver tissues of rats exposed to Pb. Additionally, LP33 exhibited adequate Pb-binding capacity and satisfactory survival under simulated gastrointestinal conditions in vitro, and promoted Pb excretion via enterohepatic circulation of bile acids. This study demonstrated that LP33 reduced Pb-induced oxidative stress and inflammation and promoted Pb excretion, thereby attenuating the Pb-induced hepatic injury. Our findings suggest that LP33 supplementation may be a potential strategy for the treatment of Pb-induced hepatic toxicity.
Collapse
|
9
|
Merhi Z, Garg B, Moseley-LaRue R, Moseley AR, Smith AH, Zhang J. Ozone therapy: a potential therapeutic adjunct for improving female reproductive health. Med Gas Res 2020; 9:101-105. [PMID: 31249259 PMCID: PMC6607862 DOI: 10.4103/2045-9912.260652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ozone is emerging as a new adjunct therapeutic agent for female infertility. We here present a review of the literature, to date, pertaining to the effect of ozone therapy on tubal, ovarian, endometrial, and vaginal factors that could potentially affect female fertility. It also presents data pertaining to the relationship of ozone therapy on pelvic adhesion formation. Most data were performed on animals and very few human studies existed in the literature. Results suggested that ozone therapy could have beneficial effect on tubal occlusion, could protect from endometritis and vaginitis, might protect ovaries from ischemia and oocyte loss and finally might lead to less formation of pelvic adhesions. There is a critical need for human studies pertaining to ozone therapy, especially using safe methods of administration, such as transdermally or intravaginally, on female fertility.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx; New Hope Fertility Center, New York, NY, USA
| | | | | | | | | | - John Zhang
- New Hope Fertility Center, New York, NY, USA
| |
Collapse
|
10
|
Costanzo M, Romeo A, Cisterna B, Calderan L, Bernardi P, Covi V, Tabaracci G, Malatesta M. Ozone at low concentrations does not affect motility and proliferation of cancer cells in vitro. Eur J Histochem 2020; 64. [PMID: 32241095 PMCID: PMC7137928 DOI: 10.4081/ejh.2020.3119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Exposure to low ozone concentrations is used in medicine as an adjuvant/complementary treatment for a variety of diseases. The therapeutic potential of low ozone concentrations relies on their capability to increase the nuclear translocation of the Nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing the transcription of Antioxidant Response Elements (ARE)-driven genes and, through a cascade of events, a general cytoprotective response. However, based on the controversial role of Nrf2 in cancer initiation, progression and resistance to therapies, possible negative effects of ozone therapy may be hypothesised in oncological patients. With the aim to elucidate the possible changes in morphology, migration capability and proliferation of cancer cells following mild ozone exposure, we performed wound healing experiments in vitro on HeLa cells treated with low ozone concentrations currently used in the clinical practice. By combining a multimodal microscopy approach (light and fluorescence microscopy, scanning electron microscopy, atomic force microscopy) with morphometric analyses, we demonstrated that, under our experimental conditions, exposure to low ozone concentrations does not alter cytomorphology, motility and proliferation features, thus supporting the notion that ozone therapy should not positively affect tumour cell growth and metastasis.
Collapse
Affiliation(s)
- Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
12
|
Wang Z, Zhang A, Meng W, Wang T, Li D, Liu Z, Liu H. Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. Eur J Pharmacol 2018; 835:82-93. [PMID: 30075224 DOI: 10.1016/j.ejphar.2018.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of lung dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures, and the inflammatory response, oxidative stress, and apoptosis play key and allegedly maladaptive roles in its pathogenesis. The aim of this study was to initially elucidate whether ozone induces oxidative preconditioning by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and secondly to determine whether ozone oxidative preconditioning (OzoneOP) protects the lung from IRI by attenuating nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3)-mediated inflammation, enhancing the antioxidant activity of Nrf2 and inhibiting apoptosis. Rats treated with or without OzoneOP (2 ml containing 100 µg/kg/day) were subjected to 1 h of lung ischemia followed by 2 h of reperfusion for 10 days. Lung damage, antioxidant capacity, inflammation and apoptosis were evaluated and compared among different groups after reperfusion. OzoneOP significantly ameliorated changes in lung morphology and protected the lung from IRI by attenuating oxidative stress, inflammation-induced injury and lung apoptosis. Moreover, OzoneOP increased the expression of Nrf2 and decreased the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), un-cleavable cysteine-requiring aspartate protease-1 (procaspase-1), cysteine-requiring aspartate protease-1 (caspase-1) and interleukin-1β (IL-1β) in the rat lungs. In summary, these results provide new insights into the molecular events modulated by ozone and suggest that ozone therapy may be an integrative support for patients with lung IRI.
Collapse
Affiliation(s)
- Zhiwen Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Ai Zhang
- General Hospital of Heilongjiang Province Land Reclamation Bureau, 235 Hashuang Road, Harbin, Heilongjiang 150088, China
| | - Weixin Meng
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Tingting Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Dandan Li
- Institute of Keshan Disease, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Zonghong Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Hongyu Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
13
|
Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem Toxicol 2018; 116:59-69. [DOI: 10.1016/j.fct.2018.03.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
14
|
Randomized controlled clinical trial on bleaching sensitivity and whitening efficacy of hydrogen peroxide versus combinations of hydrogen peroxide and ozone. Sci Rep 2018; 8:2407. [PMID: 29402954 PMCID: PMC5799293 DOI: 10.1038/s41598-018-20878-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
The clinical efficacy regarding bleaching sensitivity and tooth shade lightening using a standard hydrogen peroxide (H2O2) bleaching gel was compared with the additional use of ozone either before or after application of H2O2. Using computer-generated tables, 45 participants were randomly allocated into three groups (n = 15 each) in this investigator-driven, single-centre trial. In Group 1, upper anterior teeth were bleached using ozone (produced via a healOzone X4 device) for 60 seconds, then 38% H2O2 for 20 minutes; in Group 2, 38% H2O2 application (20 min) was followed by ozone (60 s); air produced by the healOzone machine (60 s) followed by 38% H2O2 (20 min) was used in Group 3 (control). Bleaching sensitivity was evaluated via visual analogue scales, and a treatment-blinded reader objectively recorded tooth shades using a colorimeter before and 24 hours after bleaching (at α = 0.05). The H2O2/ozone combination did not result in pain sensations, while both ozone/H2O2 and H2O2 alone increased bleaching sensitivity (p < 0.001). Teeth achieved lighter shades (higher L*/lower b* values) after bleaching in all groups (p < 0.001), while Ozone boosted lighter tooth shades, irrespective of its use before or after H2O2 (p < 0.05). Due to the complimentary effects, applying ozone after H2O2 seems preferable for bleaching.
Collapse
|