1
|
Bovine lactoferrin suppresses inflammatory cytokine expression in endometrial stromal cells in chronic endometritis. J Reprod Immunol 2022; 154:103761. [PMID: 36403531 DOI: 10.1016/j.jri.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Chronic endometritis (CE) is a type of chronic inflammation in the endometrium that is associated with infertility, which is primarily due to implantation failure. Antibiotics are the most common treatment for CE. However, some patients with CE are resistant to antibiotic treatment, while others refuse this treatment. Therefore, we focused on lactoferrin (Lf), which exhibits antimicrobial and anti-inflammatory properties, and studied its effect on inflammation in endometrial stromal cells (ESCs) from patients with CE. Endometrial tissue was collected from patients with CE, and ESCs were isolated and cultured. When ESCs were cultured with bovine lactoferrin (bLf: 1 mg/mL), the mRNA expression of TNF-α (p < 0.05) and IL-1β (p < 0.01) was significantly decreased compared with that in cells cultured without bLf. The level of TNF-α protein in the culture medium was significantly decreased (p < 0.01), while that of IL-1β was also decreased, but not significantly (p < 0.10), when 1 mg/mL of bLf was added to the culture medium. When more inflammation was induced artificially by adding 0.1 ng/mL of TNF-αto ESCs, the addition of bLf (1 mg/mL) to ESCs decreased IL-6 and IL-1β mRNA expression to levels similar to those in ESCs without TNF-α treatment. Furthermore, it was revealed that the actions of bLf are mediated by the AKT and MAPK intracellular signaling pathways, which are mechanisms by which the increase in TNF-α-induced cytokine expression is suppressed in ESCs. bLf suppresses the expression of inflammatory cytokines in human ESCs and may be a new therapeutic candidate for CE.
Collapse
|
2
|
Marsella R, Wilkes R, Ahrens K. Canine Epidermal Keratinocytes (CPEK) Grown in Monolayer Are Not Representative of Normal Canine Keratinocytes for Permeability Studies: Pilot Studies. Vet Sci 2022; 9:vetsci9010025. [PMID: 35051109 PMCID: PMC8780127 DOI: 10.3390/vetsci9010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Canine progenitor epidermal keratinocytes (CPEK) are used as canine keratinocyte cell line. Their suitability for skin barrier studies is unknown. Measurement of transepithelial electric resistance (TEER) evaluates epithelial permeability. We compared TEER and tight junction (TJ) expression in CPEKs and normal keratinocytes (NK) harvested from biopsies of normal dogs. CPEKs and NK were grown until confluence (D0) and for 13 additional days. Slides were fixed on D0 and stained with ZO-1 and claudin-1 antibodies. Five images/antibody were taken, randomized and evaluated blindly by three investigators for intensity, staining location, granularity, and continuousness. Cell size and variability were evaluated. TEER increased overtime to 2000 Ohms/cm in NK, while remained around 100–150 Ohms/cm in CPEK. ANOVA showed significant effect of time (p < 0.0001), group (p < 0.0001) and group x time interaction (p < 0.0001) for TEER. Size of CPEKs was significantly (p < 0.0001) smaller and less variable (p = 0.0078) than NK. Intensity of claudin-1 staining was greater in CPEKs (p < 0.0001) while granularity was less in CPEKs (p = 0.0012). For ZO-1, cytoplasmic staining was greater in CPEK (p < 0.0001) while membrane continuousness of staining was greater in NK (p = 0.0002). We conclude that CPEKs grown in monolayer are not representative of NK for permeability studies.
Collapse
|
3
|
Belvedere R, Pessolano E, Novizio N, Tosco A, Eletto D, Porta A, Filippelli A, Petrella F, Petrella A. The promising pro-healing role of the association of mesoglycan and lactoferrin on skin lesions. Eur J Pharm Sci 2021; 163:105886. [PMID: 34022411 DOI: 10.1016/j.ejps.2021.105886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
Skin wound repair represents an important topic for the therapeutic challenges. Many molecules are commonly used as active principles of topical devices to induce the correct tissue regeneration. Among these molecules, mesoglycan, a mixture of glycosaminoglycans, and the lactoferrin have recently aroused interest. Here, for the first time, we used mesoglycan/lactoferrin to treat the cell populations mainly involved in wound healing. We showed that human keratinocytes, fibroblasts and endothelial cells migrate and invade more rapidly when treated with the association. Moreover, we found that mesoglycan/lactoferrin, are able to trigger the differentiation process of keratinocytes, the switch of the fibroblasts into myofibroblasts, the acquisition of a mesenchymal phenotype for the endothelial cells which, in this way, start to form the capillary-like structures. Additionally, we proved that the well known antimicrobial behavior of lactoferrin encourages the inhibition of S. aureus and P. aeruginosa biofilm formation by the whole association, providing an appealing feature for this formulation. Finally, by the in vivo analysis, we showed that the mesoglycan/lactoferrin favors the closure of skin wounds performed on the mice back. Beside the decrease of the lesion diameters, by a confocal analysis of mice biopsies we found that the use of the association strongly promote cell activation underlying the correct tissue regeneration. These results encourage to further investigation aiming the development of a new topical patch that includes this association.
Collapse
Affiliation(s)
| | | | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy
| | - Francesco Petrella
- Primary Care - Wound Care Service, Health Local Agency Naples 3 South, Via Libertà 42, 80055 Portici (Napoli), Italy
| | | |
Collapse
|
4
|
Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021; 167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Lactoferrin (Lf) possesses various biological properties and therapeutic potentials being a perspective anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, and immunomodulatory agent. A significant body of literature has also demonstrated that Lf modulates regenerative processes in different anatomical structures, such as bone, cartilage, skin, mucosa, cornea, tendon, vasculature, and adipose tissue. Hence, this review collected and analyzed the data on the regenerative effects of Lf, as well as paid specific attention to their molecular basis. Furthermore, tissue and condition-specific activities of different Lf types as well as problems of their delivery to the targeted organs were discussed. The authors strongly hope that this review will stimulate researchers to focus on the highlighted topics thus accelerating the progress of Lf's wider clinical application.
Collapse
|
5
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| |
Collapse
|
6
|
Wei L, Zhang X, Wang J, Ye Q, Zheng X, Peng Q, Zheng Y, Liu P, Zhang X, Li Z, Liu C, Yan Q, Li G, Ma J. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene 2019; 39:122-135. [PMID: 31462711 DOI: 10.1038/s41388-019-0970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Lingyu Wei
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemei Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiurong Ye
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiang Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Zheng
- Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peishan Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China. .,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China. .,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
7
|
Alexander DB, Vogel HJ, Tsuda H. Lactoferrin researchers descend on Nagoya Castle. Biochem Cell Biol 2018; 95:1-4. [PMID: 28186858 DOI: 10.1139/bcb-2017-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Hans J Vogel
- b Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hiroyuki Tsuda
- c Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Miyazawa A, Kuo S, Feinberg SE. Production of progenitor cells from primary human epithelial cell monolayer cultures. In Vitro Cell Dev Biol Anim 2018; 54:413-422. [PMID: 29725883 DOI: 10.1007/s11626-018-0259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Abstract
Primary keratinocytes derived from human epidermis are widely used in tissue engineering and regenerative medicine. An important aspect in clinical applications is the preservation of human skin keratinocyte stem cells. However, it is difficult to expand the number of human skin keratinocyte stem cells, which are undifferentiated and highly proliferative in culture by using standard cell culture methods. It is even more difficult to identify them, since universal specific markers for human skin keratinocyte stem cells have not been identified. In this paper, we show a method to produce a large number of primary progenitor human skin keratinocytes by using our novel culture techniques. Primary human skin keratinocyte monolayers are cultured using twice the volume of medium without serum and lacking essential fatty acids. Once the cells reach 70-80% confluence, they begin to float up into the overlying medium and are called "epithelial pop-up keratinocytes (ePUKs)" allowing the cells to be passaged without the use of trypsin. We analyzed the properties of ePUKs by cell size, cell viability, immunocytofluorescence biomarker staining, and cell cycle phase distribution by fluorescence-activated cell sorting (FACS). Our results showed that these ePUKs appear to be progenitor epithelial cells, which are small in size, undifferentiated, and have a high proliferative capacity. We believe that ePUKs are suitable for use in medical applications requiring a large number of primary human progenitor skin keratinocytes.
Collapse
Affiliation(s)
- Atsuko Miyazawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Oral and Maxillofacial Surgery, School of Life dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Shiuhyang Kuo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen E Feinberg
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA. .,Department of Surgery, Medical School, University of Michigan, 1150 W Medical Center Drive, MSRB 2, A560B, Ann Arbor, MI, 48109, USA.
| |
Collapse
|