1
|
Ghafouri-Fard S, Dashti S, Taheri M. Erratum to "The HOTTIP (HOXA transcript at the distal tip) lncRNA: Review of oncogenic roles in human" [Biomed. Pharmacother. 127(2020) 110158]. Biomed Pharmacother 2025; 183:117868. [PMID: 39863493 DOI: 10.1016/j.biopha.2025.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
3
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
4
|
Psathas II, Birbas K, Bonatsos G, Trantas R, Mahaira LG, Kaklamanos I. Investigation of the Use of Circulating Long Non-coding RNA HOXA Transcript at the Distal Tip (LncRNA HOTTIP) as a Biomarker in Breast Cancer. Cureus 2023; 15:e50019. [PMID: 38186456 PMCID: PMC10767482 DOI: 10.7759/cureus.50019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The critical need for new diagnostic and prognostic methods is highlighted by the fact that breast cancer continues to be the top cause of cancer-related deaths globally. Due to the dysregulation of long non-coding RNAs (lncRNAs) in numerous malignancies, they have become potential biomarkers in cancer. Recent research has focused on the lncRNA HOTTIP (HOXA transcript at the distal tip), which has a function in breast cancer metastasis and carcinogenesis. Until recently, HOTTIP had only been measured in cancer tissues and specimens. The aim of this study is to assess the amounts of the lncRNA HOTTIP in the blood serum of 46 breast cancer patients using real-time PCR analysis and identify the relationships between HOTTIP expression and several known clinical and pathological factors, including tumor grade, stage, lymph node involvement, hormone receptor status, and cell proliferation. The results of the study confirmed a positive relation of HOTTIP expression and breast cancer aggressiveness and metastatic behavior. The analysis results showed elevated HOTTIP values in stage III and T3/T4 tumors with multifocal characteristics and in lymph node involvement. Our findings raise the possibility of HOTTIP serving as a future prognostic biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Ioannis I Psathas
- Surgical Oncology, General Oncological Hospital of Kifissia "Agioi Anargyroi", Athens, GRC
| | - Konstantinos Birbas
- Surgery, General Oncological Hospital of Kifissia "Agioi Anargiri" / National and Kapodistrian University of Athens, Athens, GRC
| | - Gerasimos Bonatsos
- Surgery, General Oncological Hospital of Kifissia "Agioi Anargiri" / National and Kapodistrian University of Athens, Athens, GRC
| | - Romanos Trantas
- Nursing School, National and Kapodistrian University of Athens, Athens, GRC
| | - Louisa G Mahaira
- Genetics, "Saint Savvas" General Anti-Cancer and Oncological Hospital of Athens, Athens, GRC
| | - Ioannis Kaklamanos
- Surgical Oncology, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
5
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
8
|
Identification of expression of CCND1-related lncRNAs in breast cancer. Pathol Res Pract 2022; 236:154009. [DOI: 10.1016/j.prp.2022.154009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
|
9
|
Li Z, Li M, Xia P, Lu Z. HOTTIP Mediated Therapy Resistance in Glioma Cells Involves Regulation of EMT-Related miR-10b. Front Oncol 2022; 12:873561. [PMID: 35402278 PMCID: PMC8987496 DOI: 10.3389/fonc.2022.873561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022] Open
Abstract
The advanced grade glioblastomas are characterized by dismal five-year survival rates and are associated with worse outcomes. Additionally, resistance to therapies is an additional burden responsible for glioma associated mortality. We studied the resistance against temozolomide (TMZ) as a surrogate to understand the mechanism of therapy resistance in glioma cancer cells. Screening of three glioma cells lines, A172, LN229 and SF268 revealed that SF268 glioma cells were particularly resistant to TMZ with the IC-50 of this cell line for TMZ ten times higher than for the other two cell lines. A role of lncRNAs in glioma progression has been identified in recent years and, therefore, we focused on lncRNAs for their role in regulating TMZ resistance in glioma cancer cells. lncRNA HOTTIP was found to be particularly elevated in SF268 cells and over-expression of HOTTIP in both A172 and LN229 remarkably increased their TMZ IC-50s, along with increased cell proliferation, migration, clonogenicity and markers of angiogenesis and metastasis. As a mechanism we observed increased expression of miRNA-10b and mesenchymal markers Zeb1/Zeb2 and reduced expression of E-cadherin in SF268 cells indicating a role of EMT in TMZ resistance. A172 and LN229 cells with overexpressed HOTTIP also had similarly induced EMT and the elevated miR-10b levels. Further, silencing of miR-10b in HOTTIP overexpressing cells as well as the SF268 cells reversed EMT with associated sensitization of all the tested cells to TMZ. Our results thus present a case for HOTTIP in native as well as acquired resistance of glioma cells against chemotherapy, with a key mechanistic role of EMT and the miR-10b. Thus, HOTTIP as well as miR-10b are critical targets for glioma therapy, and need to be tested further.
Collapse
|
10
|
Vitamin D May Protect against Breast Cancer through the Regulation of Long Noncoding RNAs by VDR Signaling. Int J Mol Sci 2022; 23:ijms23063189. [PMID: 35328609 PMCID: PMC8950893 DOI: 10.3390/ijms23063189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary vitamin D3 has attracted wide interest as a natural compound for breast cancer prevention and therapy, supported by in vitro and animal studies. The exact mechanism of such action of vitamin D3 is unknown and may include several independent or partly dependent pathways. The active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D, calcitriol), binds to the vitamin D receptor (VDR) and induces its translocation to the nucleus, where it transactivates a myriad of genes. Vitamin D3 is involved in the maintenance of a normal epigenetic profile whose disturbance may contribute to breast cancer. In general, the protective effect of vitamin D3 against breast cancer is underlined by inhibition of proliferation and migration, stimulation of differentiation and apoptosis, and inhibition of epithelial/mesenchymal transition in breast cells. Vitamin D3 may also inhibit the transformation of normal mammary progenitors into breast cancer stem cells that initiate and sustain the growth of breast tumors. As long noncoding RNAs (lncRNAs) play an important role in breast cancer pathogenesis, and the specific mechanisms underlying this role are poorly understood, we provided several arguments that vitamin D3/VDR may induce protective effects in breast cancer through modulation of lncRNAs that are important for breast cancer pathogenesis. The main lncRNAs candidates to mediate the protective effect of vitamin D3 in breast cancer are lncBCAS1-4_1, AFAP1 antisense RNA 1 (AFAP1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein-coding RNA 511 (LINC00511), LINC00346, small nucleolar RNA host gene 6 (SNHG6), and SNHG16, but there is a rationale to explore several other lncRNAs.
Collapse
|
11
|
Chen Z, Pei L, Zhang D, Xu F, Zhou E, Chen X. HDAC3 increases HMGB3 expression to facilitate the immune escape of breast cancer cells via down-regulating microRNA-130a-3p. Int J Biochem Cell Biol 2021; 135:105967. [PMID: 33727043 DOI: 10.1016/j.biocel.2021.105967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Histone deacetylase 3 (HDAC3) has been reported to repress the expression of various genes by eliminating acetyl group from histone. The objective of this study was to discuss the effect of HDAC3/microRNA-130a-3p (miR-130a-3p)/high-mobility group box 3 (HMGB3) on immune escape of breast cancer. METHODS HDAC3, miR-130a-3p and HMGB3 expression in breast cancer tissues and cells were tested, and the correlation between HDAC3, miR-130a-3p and HMGB3 was analyzed. CD8, CD69 and programmed cell death protein 1 (PD-1) expression was detected. MDA-MB-231 cells were treated with relative plasmid of HDAC3 or miR-130a-3p to test cell viability, migration, epithelial-mesenchymal transition (EMT) and apoptosis in MDA-MB-231 cells. The cytotoxicity of CD8+/CD69+/PD-1+T cells in MDA-MB-231 cells was tested, and CD8+/CD69+/PD-1+T cell proliferation and apoptosis before and after co-culture with MDA-MB-231 cells were detected. RESULTS HDAC3 and HMGB3 expression were raised and miR-130a-3p expression was diminished in breast cancer tissues and cells. HDAC3 was negatively correlated with miR-130a-3p while miR-130a-3p was negatively correlated with HMGB3. Down-regulating HDAC3 or up-regulating miR-130a-3p restrained cell viability, migration, EMT and anti-CD8+/CD69+/PD-1+T cytotoxicity and facilitated apoptosis of breast cancer cells. HDAC3 regulated HMGB3 by mediating miR-130a-3p expression. Down-regulating miR-130a-3p reversed the role of HDAC3 reduction on breast cancer cells. HDAC3 regulated CD8+/CD69+/PD-1+T cell proliferation and apoptosis by mediating miR-130a-3p. CONCLUSION This study provides evidence that HDAC3 increases HMGB3 expression to promote the immune escape of breast cancer cells via down-regulating miR-130a-3p.
Collapse
Affiliation(s)
- Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Pei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xianyu Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Sun Y, Yi Y, Gan S, Ye R, Huang C, Li M, Huang J, Guo Y. miR-574-5p mediates epithelial-mesenchymal transition in small cell lung cancer by targeting vimentin via a competitive endogenous RNA network. Oncol Lett 2021; 21:459. [PMID: 33907569 PMCID: PMC8063265 DOI: 10.3892/ol.2021.12720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/12/2021] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have suggested that non-coding RNAs mediate tumorigenesis via the epithelial-mesenchymal transition (EMT). However, whether the long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) plays a role in the EMT of small cell lung cancer (SCLC) remains unclear. The results of the present study suggest that HOTTIP-knockdown may lead to a significant increase in E-cadherin expression and a decrease in vimentin (VIM) expression; these proteins are two key markers of EMT. Furthermore, a notable morphological change in SCLC cells with HOTTIP-knockdown was observed: After upregulation of microRNA (miR)-574-5p, the cells exhibited a long, fusiform morphology. Investigating these phenomena further revealed that HOTTIP may participate in EMT by binding to miR-574-5p. In addition, using bioinformatics technology and a dual luciferase reporter assay, it was found that miR-574-5p inhibited VIM expression via direct binding and interaction. In summary, the present results indicate that HOTTIP may be involved in the EMT of SCLC by binding to miR-574-5p, and that miR-574-5p may act through VIM, which is a key marker of EMT.
Collapse
Affiliation(s)
- Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Center of Pathology Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Center of Pathology Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Ruifang Ye
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Center of Pathology Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Cailing Huang
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Center of Pathology Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Center of Pathology Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
13
|
Ming H, Li B, Zhou L, Goel A, Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer 2021; 1875:188519. [PMID: 33548345 DOI: 10.1016/j.bbcan.2021.188519] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cancer metastasis, defined by the epithelial to mesenchymal transition (EMT) of tumor cells, disseminates from the primary site to progressively colonize in distant tissues, and accounts for most cancer-associated deaths. However, studies on the molecular basis of cancer metastasis are still in their infancy. Besides genetic mutations, accumulating evidence indicates that epigenetic alterations also contribute in a major way to the refractory nature of cancer metastasis. Considered as one of the essential epigenetic regulators, long non-coding RNAs (lncRNAs) can act as signaling regulators, decoys, guides and scaffolds, modulating key molecules in every step of cancer metastasis including dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Although still having limited clinical application, it is encouraging to witness that several lncRNAs, including CCAT1 and HOTAIR, are under clinical evaluation as potential biomarkers for cancer staging and assessment of metastatic potential. In this review, we focus on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis and discuss their clinical potential as novel therapeutic targets as well as their diagnostic and prognostic significance for cancer treatment. Gaining clear insights into the detailed molecular basis underlying lncRNA-modulated cancer metastasis may provide previously unrecognized diagnostic and therapeutic strategies for metastatic patients.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, 1218 S. Fifth Avenue, Suite 2226, Biomedical Research Center, Monrovia, CA 91016, USA.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
15
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
16
|
Wang Y, Dong T, Wang P, Li S, Wu G, Zhou J, Wang Z. LINC00922 regulates epithelial-mesenchymal transition, invasive and migratory capacities in breast cancer through promoting NKD2 methylation. Cell Signal 2020; 77:109808. [PMID: 33045317 DOI: 10.1016/j.cellsig.2020.109808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer ranks as the major reason for mortality in women populations, accounting for 23% of all cancer deaths. One in every three Asian women encounters the risk of this cancer in their lifetime. Long intergenic non-coding RNAs (lincRNAs) have emerged as tumor promoters and suppressors. The molecular mechanism of breast cancer remains elusive. Therefore, the current study aimed to explore the role lincRNA LINC00922 plays in the development of breast cancer. Breast cancer tissues and adjacent tissues were obtained from 109 patients with breast cancer. The RNA extraction and quantification and immunohistochemical staining characterized the high expression of LINC00922 and low expression of NKD2 in breast cancer tissues in comparison to its adjacent counterparts. Furthermore, the ectopic expression and knockdown experiments were conducted to figure out the in vivo and in vitro effects of LINC00922 on breast cancer progression. The ectopically expressed LINC00922 activated the Wnt signaling pathway, promoted epithelial-mesenchymal transition, cell proliferative, invasive and migratory capacities, tumor growth and metastasis. Additionally, the RIP and ChIP assay identified that LINC00922 recruited DNMT1, DNMT3A and DNMT3B proteins in the promoter region of NKD2 to promote NKD2 promoter methylation, thus reducing the NKD2 expression. Moreover, the Wnt signaling pathway was activated subsequent to NKD2 silencing, which was reversed by LINC00922 silencing. Lastly, the anti-oncogenic effects of LINC00922 inhibition was antagonized after NKD2 knocked down. The current study provides evidence that LINC00922 acts as a tumor promoter by promoting NKD2 methylation. Hopefully, it provides a novel potential gene target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thyroid and Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Tianfu Dong
- Department of Thyroid and Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Peishun Wang
- Department of Thyroid and Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Shuqin Li
- Department of Thyroid and Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Geng Wu
- Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Jun Zhou
- Department of Thyroid and Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang 222061, PR China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
17
|
Wu H, Wei HY, Chen QQ. Long noncoding RNA HOTTIP promotes the metastatic potential of ovarian cancer through the regulation of the miR-615-3p/SMARCE1 pathway. Kaohsiung J Med Sci 2020; 36:973-982. [PMID: 32783402 DOI: 10.1002/kjm2.12282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Upregulation of lncRNA HOXA transcript at the distal tip (HOTTIP) plays important roles in cancer progression. Nevertheless, its functions in the growth and metastasis of ovarian carcinoma are unknown. In this study, we demonstrated overexpression of HOTTIP in ovarian cancer cell lines and clinical tissues. Further, we showed that higher level of HOTTIP was associated with poor survival of ovarian cancer patients. Notably, HOTTIP silencing restrained proliferation, migration, and invasiveness of ovarian carcinoma cells. On the other hand, upregulation of HOTTIP remarkably exacerbated the aggressive traits of ovarian carcinoma cells. In addition, HOTTIP served as a sponge of miR-615-3p to upregulate SMARCE1 level. Further, upregulation of miR-615-3p or downregulation of SMARCE1 reversed the carcinogenic impacts of HOTTIP in ovarian cancer. HOTTIP and miR-615-3p expression levels in ovarian cancer cells were negatively correlated, whereas HOTTIP and SMARCE1 expression levels were positively correlated. In nude mice, downregulation of HOTTIP reduced cell growth in vivo. In summary, lncRNA HOTTIP promotes the growth and metastatic phenotypes of ovarian cancer via regulating miR-615-3p/SMARCE1 pathway.
Collapse
Affiliation(s)
- Hong Wu
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Hong-Yan Wei
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Qian-Qian Chen
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| |
Collapse
|
18
|
Wu X, Lan W, Chen Q, Dong Y, Liu J, Peng W. Inferring LncRNA-disease associations based on graph autoencoder matrix completion. Comput Biol Chem 2020; 87:107282. [PMID: 32502934 DOI: 10.1016/j.compbiolchem.2020.107282] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 02/09/2023]
Abstract
Accumulating studies have indicated that long non-coding RNAs (lncRNAs) play crucial roles in large amount of biological processes. Predicting lncRNA-disease associations can help biologist to understand the molecular mechanism of human disease and benefit for disease diagnosis, treatment and prevention. In this paper, we introduce a computational framework based on graph autoencoder matrix completion (GAMCLDA) to identify lncRNA-disease associations. In our method, the graph convolutional network is utilized to encode local graph structure and features of nodes for learning latent factor vectors of lncRNA and disease. Further, the inner product of lncRNA factor vector and disease factor vector is used as decoder to reconstruct the lncRNA-disease association matrix. In addition, the cost-sensitive neural network is utilized to deal with the imbalance between positive and negative samples. The experimental results show GAMLDA outperforms other state-of-the-art methods in prediction performance which is evaluated by AUC value, AUPR value, PPV and F1-score. Moreover, the case study shows our method is the effectively tool for potential lncRNA-disease prediction.
Collapse
Affiliation(s)
- Ximin Wu
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Yi Dong
- School of Computer, Electronic and Information, Guangxi University, Nanning, China.
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Wei Peng
- The Network Center, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
19
|
Han L, Yan Y, Zhao L, Liu Y, Lv X, Zhang L, Zhao Y, Zhao H, He M, Wei M. LncRNA HOTTIP facilitates the stemness of breast cancer via regulation of miR-148a-3p/WNT1 pathway. J Cell Mol Med 2020; 24:6242-6252. [PMID: 32307830 PMCID: PMC7294123 DOI: 10.1111/jcmm.15261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that dysregulation of long non‐coding RNA (lncRNA) plays a key role in tumorigenesis. The lncRNA, HOXA transcript at the distal tip (HOTTIP), has been reported to be up‐regulated in multiple cancers, including breast cancer, and is involved in various biological processes, including the maintenance of stemness. However, the biological function and underlying modulatory mechanism of HOTTIP in breast cancer stem cells (BCSCs) remains unknown. In this study, we found that HOTTIP was markedly up‐regulated in BCSCs and had a positive correlation with breast cancer progression. Functional studies revealed that overexpression of HOTTIP markedly promoted cell clonogenicity, increased the expression of the stem cell markers, OCT4 and SOX2, and decreased the expression of the differentiation markers, CK14 and CK18, in breast cancer cells. Knockdown of HOTTIP inhibited the CSC‐like properties of BCSCs. Consistently, depletion of HOTTIP suppressed tumour growth in a humanized model of breast cancer. Mechanistic studies demonstrated that HOTTIP directly binds to miR‐148a‐3p and inhibits the mediation of WNT1, which leads to inactivation of the Wnt/β‐catenin signalling pathway. Our study is the first to report that HOTTIP regulates the CSC‐like properties of BCSCs by as a molecular sponge for miR‐148a‐3p to increase WNT1 expression, offering a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yinuo Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Liu R, Li Z, Song E, Hu P, Yang Q, Hu Y, Liu H, Jin A. LncRNA HOTTIP enhances human osteogenic BMSCs differentiation via interaction with WDR5 and activation of Wnt/β-catenin signalling pathway. Biochem Biophys Res Commun 2020; 524:1037-1043. [PMID: 32067741 DOI: 10.1016/j.bbrc.2020.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
To uncover the underlying molecular mechanism of long non-coding RNA in the osteogenic differentiation process of bone marrow mesenchymal stem cells (BMSCs), HOXA transcript at the distal tip (HOTTIP) was selected by using a lncRNA microarray assay. Results showed that HOTTIP was significantly upregulated during osteogenic differentiation of human BMSCs. Downregulation of HOTTIP by shRNA inhibited the osteogenic differentiation of BMSCs. Overexpression of HOTTIP by lentiviral vector promoted human BMSCs osteogenic differentiation by increasing the transcription of β-catenin. RIP assay and RNA pulldown assay confirmed the interaction between HOTTIP and WDR5, a transcription factor binding to the promoter of β-catenin. The interaction promoted the translocation of WDR5 into the nucleus and increased the transcription of β-catenin. Implanted HOTTIP-overexpressing BMSCs increased ectopic bone formation in nude mice. HOTTIP is a conservative long noncoding RNA that is essential for osteogenic differentiation of BMSC. HOTTIP enhances osteogenic differentiation via interaction with WDR5 and up-regulation of β-catenin gene expression, therefore activating Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruiduan Liu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Enhong Song
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Panyong Hu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qinghua Yang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yiwen Hu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Anmin Jin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:411. [PMID: 31533774 PMCID: PMC6751824 DOI: 10.1186/s13046-019-1394-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
Abstract
Background Long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP), has been demonstrated to be a vital biomarker when evaluating the prognosis of multiple cancers. Nevertheless, the potential function of HOTTIP in ovarian cancer (OC), a prevalent cancer among women worldwide, remains elusive. Hence, the current study aimed to elucidate the functional relevance of HOTTIP in the development of OC. Methods Positive expression of PD-L1 and IL-6 was determined using immunohistochemical staining in the collected OC and normal tissues. The correlation of IL-6 and PD-L1 was analyzed using flow cytometry, Western blot analysis as well as Pearson’s correlation coefficient. The interaction among HOTTIP, c-jun and IL-6 was investigated with the use of RIP, ChIP and dual luciferase reporter gene assays. Finally, the effects of HOTTIP on T cell proliferation and infiltration were identified through gain- and loss-of-function studies in vitro and in vivo. Results HOTTIP, IL-6 and PD-L1 were all highly expressed in OC tissues. A positive correlation was observed between IL-6 and PD-L1 and that between HOTTIP and IL-6 in OC tissues. HOTTIP was noted to promote the expression of IL-6 by binding to c-jun, which resulted in a promoted PD-L1 expression in neutrophils and immune escape while inhibiting T cell proliferation as well as tumor immunotherapy. Conclusion Taken together, our study unveiled that HOTTIP could promote the secretion of IL-6, and consequently up-regulate the expression of PD-L1 in neutrophils, thus inhibiting the activity of T cells and ultimately accelerating immune escape of OC cells. Our study provides a potential therapeutic strategy by targeting HOTTIP in OC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1394-6) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
A long non-coding RNA signature to improve prognostic prediction in clear cell renal cell carcinoma. Biomed Pharmacother 2019; 118:109079. [PMID: 31351427 DOI: 10.1016/j.biopha.2019.109079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Accumulating research reports have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in many types of cancers. However, few lncRNA signatures for predicting cancer prognosis have been established. Our goal is to establish a lncRNA signature for predicting the prognosis of clear cell renal cell carcinoma (ccRCC). METHODS We downloaded KIRC lncRNA FPKM (Fragments Per Kilobase of transcript per Million Fragments) standardized expression data from The Cancer Genome Atlas (TCGA) by using the TANRIC tool. We established an 11-lncRNA signature that was clearly linked to the overall survival (OS) rates in the training and test sets. RESULTS The training set was divided into the high-risk and low-risk subgroups, between which the OS was disparate (HR = 1.51, 95%CI = 1.39-1.64, P < 0.0001). The accuracy of the 11-lncRNA signature for predicting prognosis was confirmed in the test set. Further analysis revealed that the prognostic value of this signature was independent of the neoplasm grade and TNM stage. Gene set enrichment analysis (GSEA) was performed, and a summary of 4 gene sets related to canonical pathway, biological process, molecular function and cellular component was obtained. We demonstrated the biological function of these lncRNAs in ccRCC cell lines and found that LINC00488 and HOTTIP promoted tumour proliferation and inhibited apoptosis. However, LINC-PINT had the opposite effect. CONCLUSIONS The establishment of the 11-lncRNA signature indicated the underlying biochemical functional roles of the selected lncRNAs in ccRCC. Our results may provide a reliable theoretical basis for clinical evaluation of ccRCC prognosis.
Collapse
|