1
|
Gervason S, Dutkiewicz R, Want K, Benazza R, Mor-Gautier R, Grabinska-Rogala A, Sizun C, Hernandez-Alba O, Cianferani S, Guigliarelli B, Burlat B, D'Autréaux B. The ISC machinery assembles [2Fe-2S] clusters by formation and fusion of [1Fe-1S] precursors. Nat Chem Biol 2025; 21:767-778. [PMID: 39870763 DOI: 10.1038/s41589-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU. Then, the persulfide is cleaved into sulfide by the ferredoxin Fdx, leading to a [1Fe-1S] precursor. IscU dissociates from IscS, dimerizes and generates a bridging [2Fe-2S] cluster by fusion of two [1Fe-1S] precursors. The IscU dimer ultimately dissociates into a monomer, ready to transfer its [2Fe-2S] cluster to acceptors. These data provide a comprehensive description of the [2Fe-2S] cluster assembly process by the ISC assembly machinery, highlighting the formation of key intermediates through a tightly concerted process.
Collapse
Affiliation(s)
- Sylvain Gervason
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Rémi Mor-Gautier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Aneta Grabinska-Rogala
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Bruno Guigliarelli
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Bénédicte Burlat
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Ramírez-Amador F, Paul S, Kumar A, Lorent C, Keller S, Bohn S, Nguyen T, Lometto S, Vlegels D, Kahnt J, Deobald D, Abendroth F, Vázquez O, Hochberg G, Scheller S, Stripp ST, Schuller JM. Structure of the ATP-driven methyl-coenzyme M reductase activation complex. Nature 2025:10.1038/s41586-025-08890-7. [PMID: 40240609 DOI: 10.1038/s41586-025-08890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Methyl-coenzyme M reductase (MCR) is the enzyme responsible for nearly all biologically generated methane1. Its active site comprises coenzyme F430, a porphyrin-based cofactor with a central nickel ion that is active exclusively in the Ni(I) state2,3. How methanogenic archaea perform the reductive activation of F430 represents a major gap in our understanding of one of the most ancient bioenergetic systems in nature. Here we purified and characterized the MCR activation complex from Methanococcus maripaludis. McrC, a small subunit encoded in the mcr operon, co-purifies with the methanogenic marker proteins Mmp7, Mmp17, Mmp3 and the A2 component. We demonstrated that this complex can activate MCR in vitro in a strictly ATP-dependent manner, enabling the formation of methane. In addition, we determined the cryo-electron microscopy structure of the MCR activation complex exhibiting different functional states with local resolutions reaching 1.8-2.1 Å. Our data revealed three complex iron-sulfur clusters that formed an electron transfer pathway towards F430. Topology and electron paramagnetic resonance spectroscopy analyses indicate that these clusters are similar to the [8Fe-9S-C] cluster, a maturation intermediate of the catalytic cofactor in nitrogenase. Altogether, our findings offer insights into the activation mechanism of MCR and prospects on the early evolution of nitrogenase.
Collapse
Affiliation(s)
- Fidel Ramírez-Amador
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Sophia Paul
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anuj Kumar
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Christian Lorent
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Keller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Stefan Bohn
- Helmholtz Munich Cryo-Electron Microscopy Platform, Helmholtz Munich, Neuherberg, Germany
| | - Thinh Nguyen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Stefano Lometto
- Max Planck Institute for Terrestrial Microbiology and Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Dennis Vlegels
- Max Planck Institute for Terrestrial Microbiology and Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology and Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Darja Deobald
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Frank Abendroth
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Olalla Vázquez
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Georg Hochberg
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology and Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Sven T Stripp
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Jan Michael Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Scintilla S, Rossetto D, Clémancey M, Rendon J, Ranieri A, Guella G, Assfalg M, Borsari M, Gambarelli S, Blondin G, Mansy SS. Prebiotic synthesis of the major classes of iron-sulfur clusters. Chem Sci 2025; 16:4614-4624. [PMID: 39944125 PMCID: PMC11812447 DOI: 10.1039/d5sc00524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Conditions that led to the synthesis of iron-sulfur clusters coordinated to tripeptides with a single thiolate ligand were investigated by UV-vis, NMR, EPR, and Mössbauer spectroscopies and by electrochemistry. Increasing concentrations of hydrosulfide correlated with the formation of higher nuclearity iron-sulfur clusters from mononuclear to [2Fe-2S] to [4Fe-4S] and finally to a putative, nitrogenase-like [6Fe-9S] complex. Increased nuclearity was also associated with decreased dynamics and increased stability. The synthesis of higher nuclearity iron-sulfur clusters is compatible with shallow, alkaline bodies of water on the surface of the early Earth, although other niche environments are possible. Because of the plasticity of such complexes, the type of iron-sulfur cluster formed on the prebiotic Earth would have been greatly influenced by the chemical environment and the thiolate containing scaffold. The discovery that all the major classes of iron-sulfur clusters easily form under prebiotically reasonable conditions broadens the chemistry accessible to protometabolic systems.
Collapse
Affiliation(s)
- Simone Scintilla
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Hudson River, Department of Biochemistry Nieuwe Kanaal 7V Wageningen PA 6709 Netherlands
| | - Daniele Rossetto
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
| | - Martin Clémancey
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Julia Rendon
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
- University of Grenoble Alpes, CNRS, CEA, INAC-SyMMES Grenoble 38000 France
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Graziano Guella
- Department of Physics, University of Trento Via Sommarive 14 Povo TN 38123 Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Serge Gambarelli
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Sheref S Mansy
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton AB T6G 2G2 Canada
| |
Collapse
|
4
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
5
|
Feng C, Yan Q, Li X, Zhao H, Huang H, Zhang X. Discovery of a Gut Bacterial Pathway for Ergothioneine Catabolism. J Am Chem Soc 2025; 147:257-264. [PMID: 39700343 DOI: 10.1021/jacs.4c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Ergothioneine is a diet-derived micronutrient for humans. However, enzymes involved in the catabolism of ergothioneine in human gut bacteria have not yet been identified. Herein, we characterize a sulfidogenic pathway for gut bacterial catabolism of this micronutrient, which involves an unprecedented reductive desulfurization reaction catalyzed by members of the xanthine oxidoreductase family (XOR), a class of molybdenum-containing flavoproteins. Notably, this is the first C-S bond cleavage reaction known to be catalyzed by XORs. Evidence for operation of this pathway was gained through in vitro reconstruction using heterologously produced enzymes derived from the human gut bacterium Blautia producta ATCC 27340. This catabolic activity enables B. producta ATCC 27340 to use ergothioneine as an alternative electron acceptor source. Homologues of the pathway enzymes are shown to be present not only in human gut bacteria but also in many environmental bacteria, suggesting the wide distribution of this catabolic strategy. In relation to the sulfur-containing metabolite, this discovery provides significant insight into biogeochemical sulfur cycling in diverse anoxic habitats beyond the human gut and, moreover, the design of new approaches for controlling intestinal hydrogen sulfide (H2S) production.
Collapse
Affiliation(s)
- Chenxi Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xianyi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hong Zhao
- Shenzhen Readline Biotech CO., Ltd., Wanhe Medicine Park, Nanshan, Shenzhen 518057, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
7
|
Rossetto D, Cvjetan N, Walde P, Mansy SS. Protocellular Heme and Iron-Sulfur Clusters. Acc Chem Res 2024; 57:2293-2302. [PMID: 39099316 PMCID: PMC11339926 DOI: 10.1021/acs.accounts.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Central to the quest of understanding the emergence of life is to uncover the role of metals, particularly iron, in shaping prebiotic chemistry. Iron, as the most abundant of the accessible transition metals on the prebiotic Earth, played a pivotal role in early biochemical processes and continues to be indispensable to modern biology. Here, we discuss our recent contributions to probing the plausibility of prebiotic complexes with iron, including heme and iron-sulfur clusters, in mediating chemistry beneficial to a protocell. Laboratory experiments and spectroscopic findings suggest plausible pathways, often facilitated by UV light, for the synthesis of heme and iron-sulfur clusters. Once formed, heme displays catalytic, peroxidase-like activity when complexed with amphiphiles. This activity could have been beneficial in two ways. First, heme could have catalytically removed a molecule (H2O2) that could have had degradative effects on a protocell. Second, heme could have helped in the synthesis of the building blocks of life by coupling the reduction of H2O2 with the oxidation of organic substrates. The necessity of amphiphiles to avoid the formation of inactive complexes of heme is telling, as the modern-day electron transport chain possesses heme embedded within a lipid membrane. Conversely, prebiotic iron-sulfur peptides have yet to be reported to partition into lipid membranes, nor have simple iron-sulfur peptides been found to be capable of participating in the synthesis of organic molecules. Instead, iron-sulfur peptides span a wide range of reduction potentials complementary to the reduction potentials of hemes. The reduction potential of iron-sulfur peptides can be tuned by the type of iron-sulfur cluster formed, e.g., [2Fe-2S] versus [4Fe-4S], or by the substitution of ligands to the metal center. Since iron-sulfur clusters easily form upon stochastic encounters between iron ions, hydrosulfide, and small organic molecules possessing a thiolate, including peptides, the likelihood of soluble iron-sulfur clusters seems to be high. What remains challenging to determine is if iron-sulfur peptides participated in early prebiotic chemistry or were recruited later when protocellular membranes evolved that were compatible with the exploitation of electron transfer for the storage of energy as a proton gradient. This problem mirrors in some ways the difficulty in deciphering the origins of metabolism as a whole. Chemistry that resembles some facets of extant metabolism must have transpired on the prebiotic Earth, but there are few clues as to how and when such chemistry was harnessed to support a (proto)cell. Ultimately, unraveling the roles of hemes and iron-sulfur clusters in prebiotic chemistry promises to deepen our understanding of the origins of life on Earth and aids the search for life elsewhere in the universe.
Collapse
Affiliation(s)
- Daniele Rossetto
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Nemanja Cvjetan
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| |
Collapse
|
8
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krauß N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. Chem 2024; 10:2103-2130. [PMID: 39170732 PMCID: PMC11335340 DOI: 10.1016/j.chempr.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes. The prokaryotic DNA repair photolyase PhrB carries a four-iron-four-sulfur cluster ([4Fe4S]) in addition to the catalytic flavin adenine dinucleotide (FAD) and a second cofactor ribolumazine. Our recent study suggested that the [4Fe4S] cluster functions as an electron cache to coordinate two interdependent photoreactions of the FAD and ribolumazine. Here we report the crystallography observations of light-induced responses in PhrB using the cryo-trapping method and in situ serial Laue diffraction at room temperature. We capture strong signals that depict electron density changes arising from quantized electronic movements in the [4Fe4S] cluster. Our data reveal the mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light-induced redox changes. The quantum effects imaged by decomposition of electron density changes have shed light on the emerging roles of metal clusters in proteins.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Lead contact
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Weijia Kang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Rossetto D, Sebastianelli L, Oberegger S, Todorovic S, Haas H, Mansy SS. Peptide Mimics of the Cysteine-Rich Regions of HapX and SreA Bind a [2Fe-2S] Cluster In Vitro. Adv Biol (Weinh) 2024; 8:e2300545. [PMID: 38574244 DOI: 10.1002/adbi.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Indexed: 04/06/2024]
Abstract
HapX and SreA are transcription factors that regulate the response of the fungus Aspergillus fumigatus to the availability of iron. During iron starvation, HapX represses genes involved in iron consuming pathways and upon a shift to iron excess, HapX activates these same genes. SreA blocks the expression of genes needed for iron uptake during periods of iron availability. Both proteins possess cysteine-rich regions (CRR) that are hypothesized to be necessary for the sensing of iron levels. However, the contribution of each of these domains to the function of the protein has remained unclear. Here, the ability of peptide analogs of each CRR is determined to bind an iron-sulfur cluster in vitro. UV-vis and resonance Raman (RR) spectroscopies reveal that each CRR is capable of coordinating a [2Fe-2S] cluster with comparable affinities. The iron-sulfur cluster coordinated to the CRR-B domain of HapX displays particularly high stability. The data are consistent with HapX and SreA mediating responses to cellular iron levels through the direct coordination of [2Fe-2S] clusters. The high stability of the CRR-B peptide may also find use as a starting point for the development of new green catalysts.
Collapse
Affiliation(s)
- Daniele Rossetto
- D-CIBIO, University of Trento, via Sommarive 9, Trento, 38123, Italy
| | - Lorenzo Sebastianelli
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Simon Oberegger
- Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80, Innsbruck, 6020, Austria
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, Oeiras, 2780-157, Portugal
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80, Innsbruck, 6020, Austria
| | - Sheref S Mansy
- D-CIBIO, University of Trento, via Sommarive 9, Trento, 38123, Italy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
10
|
Harmer JR, Hakopian S, Niks D, Hille R, Bernhardt PV. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Cupriavidus necator. J Am Chem Soc 2023; 145:25850-25863. [PMID: 37967365 DOI: 10.1021/jacs.3c10199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.
Collapse
Affiliation(s)
- Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
11
|
Mikhlin Y, Likhatski M, Borisov R, Karpov D, Vorobyev S. Metal Chalcogenide-Hydroxide Hybrids as an Emerging Family of Two-Dimensional Heterolayered Materials: An Early Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6381. [PMID: 37834518 PMCID: PMC10573794 DOI: 10.3390/ma16196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Two-dimensional (2D) materials and phenomena attract huge attention in modern science. Herein, we introduce a family of layered materials inspired by the minerals valleriite and tochilinite, which are composed of alternating "incompatible", and often incommensurate, quasi-atomic sheets of transition metal chalcogenide (sulfides and selenides of Fe, Fe-Cu and other metals) and hydroxide of Mg, Al, Fe, Li, etc., stacked via electrostatic interaction rather than van der Waals forces. We survey the data available on the composition and structure of the layered minerals, laboratory syntheses of such materials and the effect of reaction conditions on the phase purity, morphology and composition of the products. The spectroscopic results (Mössbauer, X-ray photoelectron, X-ray absorption, Raman, UV-vis, etc.), physical (electron, magnetic, optical and some others) characteristics, a specificity of thermal behavior of the materials are discussed. The family of superconductors (FeSe)·(Li,Fe)(OH) having a similar layered structure is briefly considered too. Finally, promising research directions and applications of the valleriite-type substances as a new class of prospective multifunctional 2D materials are outlined.
Collapse
Affiliation(s)
- Yuri Mikhlin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; (M.L.); (R.B.); (D.K.); (S.V.)
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Maxim Likhatski
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; (M.L.); (R.B.); (D.K.); (S.V.)
| | - Roman Borisov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; (M.L.); (R.B.); (D.K.); (S.V.)
- Institute of Nonferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Denis Karpov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; (M.L.); (R.B.); (D.K.); (S.V.)
- Institute of Nonferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Sergey Vorobyev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; (M.L.); (R.B.); (D.K.); (S.V.)
| |
Collapse
|
12
|
Gurhan H, Barnes F. Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells. Sci Rep 2023; 13:14223. [PMID: 37648766 PMCID: PMC10469173 DOI: 10.1038/s41598-023-41167-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
There are substantial concerns that extended exposures to weak radiofrequency (RF) fields can lead to adverse health effects. In this study, HT-1080 fibrosarcoma cells were simultaneously exposed to a static magnetic flux density between 10 [Formula: see text] and 300 [Formula: see text] and RF magnetic fields with amplitudes ranging from 1 nT to 1.5 μT in the frequency range from 1.8 to 7.2 MHz for four days. Cell growth rates, intracellular pH, hydrogen peroxide, peroxynitrite, membrane potential and mitochondrial calcium were measured. Results were dependent on carrier frequency and the magnitude of the RF magnetic field, modulation frequencies and the background static magnetic field (SMF). Iron sulphur (Fe-S) clusters are essential for the generation of reactive oxygen species and reactive nitrogen species (ROS and RNS). We believe the observed changes are associated with hyperfine couplings between the chemically active electrons and nuclear spins. Controlling external magnetic fields may have important clinical implications on aging, cancer, arthritis, and Alzheimer's.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA.
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA
| |
Collapse
|
13
|
Gurhan H, Bajtoš M, Barnes F. Weak Radiofrequency Field Effects on Chemical Parameters That Characterize Oxidative Stress in Human Fibrosarcoma and Fibroblast Cells. Biomolecules 2023; 13:1112. [PMID: 37509147 PMCID: PMC10377549 DOI: 10.3390/biom13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In the last few decades, evidence has surfaced that weak radiofrequency (RF) fields can influence biological systems. This work aims to improve our understanding of how externally applied weak RF fields alter concentrations of chemical parameters that characterize oxidative stress. We conducted a series of experiments to investigate the effects of applying weak RF magnetic fields within the 3-5 MHz region on mitochondrial respiration in both human fibrosarcoma and fibroblast cells over a period of four days. Our experimental data show that RF fields between 3 and 5 MHz were able to change the modulation of mitochondrial signaling by changing the cell growth, mitochondrial mass, and oxidative stress. Exposure to RF fields at 4.2 MHz significantly increased the mitochondrial mass and oxidative stress in fibrosarcoma cells. There are substantial concerns that extended exposure to weak RF fields can lead to health effects. The ability to control these parameters by external magnetic fields may have important clinical implications.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Marek Bajtoš
- Department of Electromagnetic and Biomedical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
| | - Frank Barnes
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Stewart JA, Bhagwat AS. A redox-sensitive iron-sulfur cluster in murine FAM72A controls its ability to degrade the nuclear form of uracil-DNA glycosylase. DNA Repair (Amst) 2022; 118:103381. [PMID: 35908367 PMCID: PMC10996437 DOI: 10.1016/j.dnarep.2022.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Murine FAM72A, mFAM72A, binds the nuclear form of uracil-DNA glycosylase, mUNG2, inhibits its activity and causes its degradation. In immunoprecipitation assays the human paralog, hFAM72A, binds hUNG2 and is a potential anti-cancer drug target because of its high expression in many cancers. Using purified mFAM72A, and mUNG2 proteins we show that mFAM72A binds mUNG2, and the N-terminal 25 amino acids of mUNG2 bind mFAM72A at a nanomolar dissociation constant. We also show that mFAM72A is present throughout the cells, and mUNG2 helps localize it to nuclei. Based on in silico models of mFAM72A-mUNG2 interactions, we constructed several mutants of mFAM72A and found that while they have reduced ability to deplete mUNG2, the mutations also destabilized the former protein. We confirmed that Withaferin A, a predicted lead molecule for the design of FAM72A inhibitors, binds mFAM72A with micromolar affinity but has little affinity to mUNG2. We identified two potential metal-binding sites in mFAM72A and show that one of the sites contains an Fe-S cluster. This redox-sensitive cluster is involved in the mFAM72A-mUNG2 interaction and modulates mFAM72A activity. Hydrogen peroxide treatment of cells increases mUNG2 depletion in a FAM72A-dependent fashion suggesting that mFAM72A activity is redox-sensitive.
Collapse
Affiliation(s)
- Jessica A Stewart
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|