1
|
Lv S, Duan M, Fan B, Fan W. Mechanisms of Triton X-100 reducing the Ag +-resistance of Enterococcus faecalis. World J Microbiol Biotechnol 2024; 40:231. [PMID: 38833075 DOI: 10.1007/s11274-024-04020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
To investigate the mechanism of Triton X-100 (TX-100) reducing the Ag+-resistance of Enterococcus faecalis (E. faecalis), and evaluate the antibacterial effect of TX-100 + Ag+ against the induced Ag+-resistant E. faecalis (AREf). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AgNO3 against E. faecalis with/without TX-100 were determined to verify the enhanced antibacterial activity. Transmission electron microscopy (TEM) was used to observe the morphological changes of E. faecalis after treatment. The intra- and extracellular concentration of Ag+ in treated E. faecalis was evaluated using inductively coupled plasma mass spectrometer (ICP-MS). The changes in cell membrane potential and integrity of treated E. faecalis were also observed using the flow cytometer. Moreover, AREf was induced through continuous exposure to sub-MIC of Ag+ and the antibacterial effect of TX-100 + Ag+ on AREf was further evaluated. The addition of 0.04% TX-100 showed maximal enhanced antibacterial effect of Ag+ against E. faecalis. The TEM and ICP-MS results demonstrated that TX-100 could facilitate Ag+ to enter E. faecalis through changing the membrane structure and integrity. Flow cytometry further showed the effect of TX-100 on membrane potential and permeability of E. faecalis. In addition, the enhanced antibacterial effect of TX-100 + Ag+ was also confirmed on induced AREf. TX-100 can facilitate Ag+ to enter E. faecalis through disrupting the membrane structure and changing the membrane potential and permeability, thus reducing the Ag+-resistance of E. faecalis and enhancing the antibacterial effect against either normal E. faecalis or induced AREf.
Collapse
Affiliation(s)
- Silei Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Mengting Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Roul D, Rozec B, Ferron M, Erfanian M, Persello A, Audigane L, Grabherr A, Erraud A, Merlet N, Guijarro D, Muramatsu I, Lauzier B, Gauthier C. β 1-Adrenergic cardiac contractility is increased during early endotoxemic shock: Involvement of cyclooxygenases. Life Sci 2019; 236:116865. [PMID: 31525428 DOI: 10.1016/j.lfs.2019.116865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS Endothelial dysfunction is one of the earliest symptoms in septic patients and plays an important role in the cardiovascular alterations. However, the endothelial mechanisms involved in the impaired sympathetic regulation of the cardiovascular system are not clear. This study aimed to determine the role of the endocardial endothelium (EE) in the cardiac β-adrenergic (β-AR) remodeling at the early phase of endotoxemic shock. MAIN METHODS Rats received either lipopolysaccharide (LPS) or saline (control) intravenously. Three hours later, β-AR cardiac contractility was evaluated on papillary muscles with or without a functional EE. KEY FINDINGS Isoproterenol-induced contractility was strongly increased in papillary muscles from LPS rats. A similar increase was observed with a β1-AR stimulation, whereas β2-AR and β3-AR produced similar contractility in control and LPS treatments. The removal of the EE did not modify β1-AR-induced contractility in controls, whereas it abolished the increased β1-AR response in LPS-treated muscles. In LPS-treated papillary muscle, the increased β1-AR-induced contractility was not modified by pretreatment with a NOS inhibitor or an endothelin receptor antagonist. Conversely, the increased β1-AR-induced contractility was abolished by indomethacin, a non-selective cyclooxygenase (COX) inhibitor, as well as by selective inhibitors of COX1 and COX2. An early treatment with indomethacin improved the survival of LPS rat. SIGNIFICANCE Our results suggest that the EE is involved in the increased cardiac β1-AR contractility in the early phase of endotoxemic shock. This effect is mediated through the activation of COX1 and COX2 and suggests these may be novel putative therapeutic targets during endotoxemic shock.
Collapse
Affiliation(s)
- David Roul
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Rozec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.
| | - Marine Ferron
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Leslie Audigane
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Nolwenn Merlet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Damien Guijarro
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | | | | |
Collapse
|
3
|
Curry L, Almukhtar H, Alahmed J, Roberts R, Smith PA. Simvastatin Inhibits L-Type Ca2+-Channel Activity Through Impairment of Mitochondrial Function. Toxicol Sci 2019; 169:543-552. [DOI: 10.1093/toxsci/kfz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Liam Curry
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hani Almukhtar
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jala Alahmed
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard Roberts
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Paul A Smith
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc Natl Acad Sci U S A 2017; 114:3109-3114. [PMID: 28265069 DOI: 10.1073/pnas.1611717114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10-100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.
Collapse
|
5
|
Sharma A, Nguyen H, Cai L, Lou H. Histone hyperacetylation and exon skipping: a calcium-mediated dynamic regulation in cardiomyocytes. Nucleus 2016; 6:273-8. [PMID: 26325491 DOI: 10.1080/19491034.2015.1081324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In contrast to cell type-specific pre-mRNA alternative splicing, mechanisms controlling activity-dependent alternative splicing is under-studied and not well understood. In a recent study, we conducted a comprehensive analysis of calcium-mediated mechanism that regulates alternative exon skipping in mouse cardiomyocytes. Our results reveal a strong link between histone hyperacetylation and skipping of cassette exons, and provide support to the kinetic coupling model of the epigenetic regulation of alternative splicing at the chromatin level.
Collapse
Affiliation(s)
- Alok Sharma
- a Department of Genetics and Genome Sciences ; Case Western Reserve University ; Cleveland , OH USA
| | | | | | | |
Collapse
|
6
|
Ekins S, Litterman NK, Arnold RJG, Burgess RW, Freundlich JS, Gray SJ, Higgins JJ, Langley B, Willis DE, Notterpek L, Pleasure D, Sereda MW, Moore A. A brief review of recent Charcot-Marie-Tooth research and priorities. F1000Res 2015; 4:53. [PMID: 25901280 PMCID: PMC4392824 DOI: 10.12688/f1000research.6160.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
This brief review of current research progress on Charcot-Marie-Tooth (CMT) disease is a summary of discussions initiated at the Hereditary Neuropathy Foundation (HNF) scientific advisory board meeting on November 7, 2014. It covers recent published and unpublished
in vitro and
in vivo research. We discuss recent promising preclinical work for CMT1A, the development of new biomarkers, the characterization of different animal models, and the analysis of the frequency of gene mutations in patients with CMT. We also describe how progress in related fields may benefit CMT therapeutic development, including the potential of gene therapy and stem cell research. We also discuss the potential to assess and improve the quality of life of CMT patients. This summary of CMT research identifies some of the gaps which may have an impact on upcoming clinical trials. We provide some priorities for CMT research and areas which HNF can support. The goal of this review is to inform the scientific community about ongoing research and to avoid unnecessary overlap, while also highlighting areas ripe for further investigation. The general collaborative approach we have taken may be useful for other rare neurological diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA ; Collaborations in Chemistry, Fuquay Varina, NC, 27526, USA ; Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | | | - Renée J G Arnold
- Arnold Consultancy & Technology LLC, New York, NY, 10023, USA ; Master of Public Health Program, Mount Sinai School of Medicine, New York, NY, 10029, USA ; Quorum Consulting, Inc, San Francisco, CA, 94104, USA
| | - Robert W Burgess
- The Jackson Laboratory in Bar Harbor, Bar Harbour, ME, 04609, USA
| | - Joel S Freundlich
- Department of Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Steven J Gray
- Gene Therapy Center and Dept. of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7352, USA
| | | | - Brett Langley
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA ; Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Dianna E Willis
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA ; Department of Neurology, University of California, Davis, School of Medicine, c/o Shriners Hospital, Sacramento, CA, 95817, USA
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute (MPI) of Experimental Medicine, Göttingen, 37075, Germany ; Department of Clinical Neurophysiology, University Medical Center (UMG), Göttingen, D-37075, Germany
| | - Allison Moore
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA
| |
Collapse
|
7
|
Sharma A, Nguyen H, Geng C, Hinman MN, Luo G, Lou H. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc Natl Acad Sci U S A 2014; 111:E4920-8. [PMID: 25368158 PMCID: PMC4246288 DOI: 10.1073/pnas.1408964111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.
Collapse
Affiliation(s)
| | | | - Cuiyu Geng
- Department of Genetics and Genome Sciences
| | | | - Guangbin Luo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
8
|
Ochi R, Chettimada S, Gupte SA. Poly(ethylene glycol)-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells. PLoS One 2014; 9:e107049. [PMID: 25197984 PMCID: PMC4157810 DOI: 10.1371/journal.pone.0107049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol) cholesteryl ether (PEG-cholesterol) is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca2+ channel currents (ICa,L) recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD) is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD)) caused inhibition of ICa,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased ICa,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased ICa,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window ICa,L more strongly as compared with cholesterol (MβCD). Poly(ethylene glycol) conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of ICa,L.
Collapse
Affiliation(s)
- Rikuo Ochi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| | - Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sachin A. Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| |
Collapse
|