1
|
Bu S, Joseph JJ, Nguyen HC, Ehsan M, Rasheed B, Singh A, Qadura M, Frisbee JC, Singh KK. MicroRNA miR-378-3p is a novel regulator of endothelial autophagy and function. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100027. [PMID: 39803361 PMCID: PMC11708318 DOI: 10.1016/j.jmccpl.2022.100027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/16/2025]
Abstract
Autophagy is a highly conserved cellular process in which cytoplasmic materials are internalized into an autophagosome that later fuses with a lysosome for their degradation and recycling. MicroRNAs (miRNAs) are integral regulators in various cellular processes including autophagy and endothelial function. Accordingly, we hypothesize that miRNA, miR-378-3p, is an essential regulator of endothelial autophagy and endothelial function. MiR-378-3p expression was measured following inhibition and activation of autophagy in endothelial cells. A gain- or loss-of function approach was employed to either overexpress or inhibit the expression of miR-378-3p, respectively, in cultured endothelial cells, and markers of autophagy and indices of endothelial function, such as proliferation, migration and tube forming potential were measured. Inhibition and activation of autophagy up- and down-regulated the expression of miR-378-3p, respectively. Furthermore, miR-378a-3p overexpression was associated with impaired autophagy indicated by a reduced LC3-II/LC3-I ratio, and endothelial function indicated by increased proliferation associated with reduced p21 expression, reduced angiogenic potential and increased migration, which were associated with reduced expression of endothelial nitric oxide synthase (eNOS), an essential regulator of endothelial function. Accordingly, miR-378a-3p inhibition was associated with reduced cell proliferation, migration and increased eNOS in endothelial cells. Apoptosis was not affected in cells transfected with antagomir. Using in silico approach, Protein Disulfide Isomerase Family A Member 4 (PDIA-4) was identified and confirmed as a target of miR-378-3p. PDIA-4 expression was significantly reduced or enhanced in miR-378-3p-overexpressing or -silenced endothelial cells, respectively. Our findings show an inverse relationship between miR-378-3p and endothelial autophagy and function, providing a novel insight about the epigenetic regulation of these processes.
Collapse
Affiliation(s)
- Shuhan Bu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jameela J. Joseph
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mehroz Ehsan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Berk Rasheed
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mohammad Qadura
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Lusini M, Nenna A, Chello C, Greco SM, Gagliardi I, Nappi F, Chello M. Role of autophagy in aneurysm and dissection of the ascending aorta. Future Cardiol 2020; 16:517-526. [PMID: 32524854 DOI: 10.2217/fca-2019-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Maintenance of physiologically balanced levels of autophagy is crucial for cellular homeostasis and in the normal vessel wall, balanced autophagy can be considered a cytoprotective mechanism that preserves endothelial function and prevents cardiovascular disease. Recent studies pointed out the importance of the modulation of the autophagic flux in the pathogenesis of aortic dissection and aneurysms of the ascending aorta. Notably, shear stress (and its receptor p62), IL-6, Rab7 and Atg5/IRE1α pathways of autophagy may be considered the novel super-selective therapeutic target for the preventive and postoperative treatment of aortic aneurysm and aortic dissection. This review intends to summarize current evidences in this field trying to enlighten new avenues for future researches.
Collapse
Affiliation(s)
- Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Camilla Chello
- Department of Dermatology, Università La Sapienza di Roma, Rome, Italy
| | | | - Ilaria Gagliardi
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, Paris, France
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Liu S, Huang T, Liu R, Cai H, Pan B, Liao M, Yang P, Wang L, Huang J, Ge Y, Xu B, Wang W. Spermidine Suppresses Development of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2020; 9:e014757. [PMID: 32308093 PMCID: PMC7428527 DOI: 10.1161/jaha.119.014757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechanisms of spermidine treatment on experimental AAA disease. Methods and Results Experimental AAAs were induced in 8‐ to 10‐week‐old male C57BL/6J mice by transient intra‐aortic infusion of porcine pancreatic elastase. Spermidine was administered via drinking water at a concentration of 3 mmol/L. Spermidine treatment prevented experimental AAA formation with preservation of medial elastin and smooth muscle cells. In immunostaining, macrophages, T cells, neutrophils, and neovessels were significantly reduced in aorta of spermidine‐treated, as compared with vehicle‐treated elastase‐infused mice. Additionally, flow cytometric analysis showed that spermidine treatment reduced aortic leukocyte infiltration and circulating inflammatory cells. Furthermore, we demonstrated that spermidine treatment promoted autophagy‐related proteins in experimental AAAs using Western blot analysis, immunostaining, and transmission electron microscopic examination. Autophagic function was evaluated for human abdominal aneurysmal and nonaneurysmal adjacent aortae from AAA patients using Western blot analysis and immunohistochemistry. Dysregulated autophagic function, as evidenced by increased SQSTM1/p62 protein and phosphorylated mTOR, was found in aneurysmal, as compared with nonaneurysmal, aortic segments. Conclusions Our results suggest that spermidine supplementation limits experimental AAA formation associated with preserved aortic structural integrity, attenuated aortic inflammatory infiltration, reduced circulating inflammatory monocytes, and increased autophagy‐related proteins. These findings suggest that spermidine may be a promising treatment for AAA disease.
Collapse
Affiliation(s)
- Shuai Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Tingting Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Rui Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Huoying Cai
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Baihong Pan
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Mingmei Liao
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Pu Yang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Lei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Jianhua Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Baohui Xu
- Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China.,National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan China
| |
Collapse
|
4
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
5
|
Salmon M, Spinosa M, Zehner ZE, Upchurch GR, Ailawadi G. Klf4, Klf2, and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation. Physiol Rep 2019; 7:e14058. [PMID: 31025534 PMCID: PMC6483937 DOI: 10.14814/phy2.14058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the aorta that is characterized by an initial influx of inflammatory cells followed by a pro-inflammatory, migratory, proliferative, and eventually apoptotic smooth muscle cell phenotype. In recent years, the mechanisms related to the initial influx of inflammatory cells have become well-studied; the mechanisms related to chronic aneurysm formation, smooth muscle cell apoptosis and death are less well-characterized. Autophagy is a generally believed to be a protective cellular mechanism that functions to recycle defective proteins and cellular organelles to maintain cellular homeostasis. Our goal with the present study was to investigate the role of autophagy in smooth muscle cells during AAA formation. Levels of the autophagy factors, Beclin, and LC3 were elevated in human and mouse AAA tissue via both qPCR and immunohistochemical analysis. Confocal staining in human and mouse AAA tissue demonstrated Beclin and LC3 were present in smooth muscle cells during AAA formation. Treatment of smooth muscle cells with porcine pancreatic elastase or interleukin (IL)-1β activated autophagy-related genes in vitro while treatment with a siRNA to Kruppel-like transcription factor 4 (Klf4), Kruppel-like transcription factor 2 (Klf2) or Zinc-finger protein 148 (Zfp148) separately inhibited activation of autophagy genes. Chromatin immunoprecipitation assays demonstrated that Klf4, Klf2, and Zfp148 separately bind autophagy genes in smooth muscle cells following elastase treatment. These results demonstrate that autophagy is an important mechanism related to Klfs in smooth muscle cells during AAA formation.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Michael Spinosa
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Zendra E. Zehner
- Department of BiochemistryVirginia Commonwealth University Medical CenterRichmondVirginiaUSA
| | | | - Gorav Ailawadi
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- The Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
6
|
Liu GS, Zhu H, Cai WF, Wang X, Jiang M, Essandoh K, Vafiadaki E, Haghighi K, Lam CK, Gardner G, Adly G, Nicolaou P, Sanoudou D, Liang Q, Rubinstein J, Fan GC, Kranias EG. Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6 S10F mutant. Autophagy 2018; 14:80-97. [PMID: 29157081 DOI: 10.1080/15548627.2017.1392420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HSPB6/Hsp20 (heat shock protein family B [small] member 6) has emerged as a novel cardioprotector against stress-induced injury. We identified a human mutant of HSPB6 (HSPB6S10F) exclusively present in dilated cardiomyopathy (DCM) patients. Cardiac expression of this mutant in mouse hearts resulted in remodeling and dysfunction, which progressed to heart failure and early death. These detrimental effects were associated with reduced interaction of mutant HSPB6S10F with BECN1/Beclin 1, leading to BECN1 ubiquitination and its proteosomal degradation. As a result, autophagy flux was substantially inhibited and apoptosis was increased in HSPB6S10F-mutant hearts. In contrast, overexpression of wild-type HSPB6 (HSPB6 WT) not only increased BECN1 levels, but also competitively suppressed binding of BECN1 to BCL2, resulting in stimulated autophagy. Indeed, preinhibition of autophagy attenuated the cardioprotective effects of HSPB6 WT. Taken together, these findings reveal a new regulatory mechanism of HSPB6 in cell survival through its interaction with BECN1. Furthermore, Ser10 appears to be crucial for the protective effects of HSPB6 and transversion of this amino acid to Phe contributes to cardiomyopathy.
Collapse
Affiliation(s)
- Guan-Sheng Liu
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Hongyan Zhu
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Wen-Feng Cai
- b Department of Pathology & Lab Medicine , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Xiaohong Wang
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Min Jiang
- c Department of Internal Medicine , University of Cincinnati College of Medicine. Cincinnati , OH , USA
| | - Kobina Essandoh
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Elizabeth Vafiadaki
- d Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Kobra Haghighi
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Chi Keung Lam
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - George Gardner
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - George Adly
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Persoulla Nicolaou
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Despina Sanoudou
- d Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Qiangrong Liang
- e Department of Biomedical Sciences , New York Institute of Technology College of Osteopathic Medicine , Old Westbury , NY , USA
| | - Jack Rubinstein
- c Department of Internal Medicine , University of Cincinnati College of Medicine. Cincinnati , OH , USA
| | - Guo-Chang Fan
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA
| | - Evangelia G Kranias
- a Department of Pharmacology & System Physiology , University of Cincinnati College of Medicine, Cincinnati , OH , USA.,d Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| |
Collapse
|
7
|
Zhai K, Yang Z, Zhu X, Nyirimigabo E, Mi Y, Wang Y, Liu Q, Man L, Wu S, Jin J, Ji G. Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms. Oncotarget 2018; 7:21156-67. [PMID: 27056888 PMCID: PMC5008275 DOI: 10.18632/oncotarget.8549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are traditionally thought to be expressed exclusively on the taste buds of the tongue. However, accumulating evidence has indicated that this receptor family performs non-gustatory functions outside the mouth in addition to taste. Here, we examined the role of TAS2Rs in human and mouse detrusor smooth muscle (DSM). We showed that mRNA for various TAS2R subtypes was expressed in both human and mouse detrusor smooth muscle (DSM) at distinct levels. Chloroquine (CLQ), an agonist for TAS2Rs, concentration-dependently relaxed carbachol- and KCl-induced contractions of human DSM strips. Moreover, 100 μM of CLQ significantly inhibited spontaneous and electrical field stimulation (EFS)-induced contractions of human DSM strips. After a slight contraction, CLQ (1 mM) entirely relaxed carbachol-induced contraction of mouse DSM strips. Furthermore, denatonium and quinine concentration-dependently decreased carbachol-induced contractions of mouse DSM strips. Finally, we demonstrated that CLQ treatment significantly suppressed the overactive bladder (OAB) symptoms of mice with partial bladder outlet obstruction (PBOO). In conclusion, we for the first time provide evidence of the existence of TAS2Rs in the urinary DSM and demonstrate that TAS2Rs may represent a potential target for OAB. These findings open a new approach to develop drugs for OAB in the future.
Collapse
Affiliation(s)
- Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Zhu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Eric Nyirimigabo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue Mi
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Yan Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Qinghua Liu
- Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Shiliang Wu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Jie Jin
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Marouane Kheloufi
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Service d'hépatologie, DHU unity, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Chantal M Boulanger
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France
| |
Collapse
|
9
|
Ramadan A, Al-Omran M, Verma S. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Atherosclerosis 2017; 257:288-296. [PMID: 28139205 DOI: 10.1016/j.atherosclerosis.2017.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Azza Ramadan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada.
| |
Collapse
|
10
|
Wang Y, Zhao ZM, Zhang GX, Yang F, Yan Y, Liu SX, Li SH, Wang GK, Xu ZY. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells. Biochem Biophys Res Commun 2016; 479:358-364. [DOI: 10.1016/j.bbrc.2016.09.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|