1
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
2
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
3
|
Zhang S, Zheng S, Li Y, Yang J, Mao X, Liu T, Zhang Q, Fu Z, Zhu X, Xu L. Protective effects of syringic acid in nonalcoholic fatty liver in rats through regulation of Nrf2/HO-1 signaling pathway. J Biochem Mol Toxicol 2024; 38:e23809. [PMID: 39148263 DOI: 10.1002/jbt.23809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Simiao Zhang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sheng Zheng
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ya Li
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Juan Yang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaozhou Mao
- Graduate School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Tao Liu
- Graduate School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Qiuxin Zhang
- Graduate School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - ZhiPeng Fu
- Graduate School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Xing Zhu
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital - Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
- Shenzhen University International Cancer Center, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Jafaripour L, Sohrabi Zadeh B, Jafaripour E, Ahmadvand H, Asadi-Shekaari M. Gallic acid improves liver cirrhosis by reducing oxidative stress and fibrogenesis in the liver of rats induced by bile duct ligation. Scand J Gastroenterol 2023; 58:1474-1483. [PMID: 37452479 DOI: 10.1080/00365521.2023.2229929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Disturbance in the production and excretion of bile acid causes cholestatic liver disease. Liver cirrhosis is a disease that occurs if cholestasis continues. This study evaluated the protective effect of gallic acid (GA) on liver damage caused by biliary cirrhosis. Rats were randomly divided into 4 groups, each with 8 subjects: 1) control, 2) BDL, 3) BDL + GA 20, and 4) BDL + GA 30. The rats were anesthetized 28 days after the BDL, followed by collecting their blood and excising their liver. Their serum was used to measure liver enzymes, and the liver was used for biochemical analysis, gene expression, and histopathological analysis. Serum levels of liver enzymes, total bilirubin, liver Malondialdehyde level (MDA), expression of inflammatory cytokines and caspase-3, necrosis of hepatocytes, bile duct proliferation, lymphocytic infiltration, and liver fibrosis showed an increase in the BDL group compared to the control group (p < 0.05). In addition, BDL decreased the activity of liver antioxidant enzymes and glutathione (GSH) levels compared to the control group (p < 0.05). The groups receiving GA indicated a decrease in liver enzymes, total bilirubin, MDA, the expression of inflammatory cytokines and caspase-3, and a reduction in liver tissue damage compared to the BDL group (p < 0.05). The level of GSH in the BDL + GA 20 group showed a significant increase compared to the BDL group (p < 0.05). Moreover, it was found that GA, with its anti-fibrotic and anti-inflammatory properties, reduces liver damage caused by biliary cirrhosis.
Collapse
Affiliation(s)
- Leila Jafaripour
- Razi Herbal Medicines Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behzad Sohrabi Zadeh
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Elham Jafaripour
- General Department of Education, Education Research Institute, Khuzestan, Ahvaz, Iran
| | - Hassan Ahmadvand
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Zhang Z, Yuan Y, Hu L, Tang J, Meng Z, Dai L, Gao Y, Ma S, Wang X, Yuan Y, Zhang Q, Cai W, Ruan X, Guo X. ANGPTL8 accelerates liver fibrosis mediated by HFD-induced inflammatory activity via LILRB2/ERK signaling pathways. J Adv Res 2022; 47:41-56. [PMID: 36031141 PMCID: PMC10173191 DOI: 10.1016/j.jare.2022.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION High calorie intake is known to induce nonalcoholic fatty liver disease (NAFLD) by promoting chronic inflammation. However, the mechanisms are poorly understood. OBJECTIVES This study examined the roles of ANGPTL8 in the regulation of NAFLD-associated liver fibrosis progression induced by high fat diet (HFD)-mediated inflammation. METHODS The ANGPTL8 concentration was measured in serum samples from liver cancer and liver cirrhosis patients. ANGPTL8 knockout mice were used to induce disease models (HFD, HFHC and CCL4) followed by pathological staining, western blot and immunohistochemistry. Hydrodynamic injection of an adeno-associated virus 8 (AAV8) was used to establish a model for restoring ANGPTL8 expression specifically in ANGPTL8 KO mice livers. RNA-sequencing, protein array, Co-IP, etc. were used to study ANGPTL8's mechanisms in regulating liver fibrosis progression, and drug screening was used to identify an effective inhibitor of ANGPTL8 expression. RESULTS ANGPTL8 level is associated with liver fibrogenesis in both cirrhosis and hepatocellular carcinoma patients. Mouse studies demonstrated that ANGPTL8 deficiency suppresses HFD-stimulated inflammatory activity, hepatic steatosis and liver fibrosis. The AAV-mediated restoration of liver ANGPTL8 expression indicated that liver-derived ANGPTL8 accelerates HFD-induced liver fibrosis. Liver-derived ANGPTL8, as a proinflammatory factor, activates HSCs (hepatic stellate cells) by interacting with the LILRB2 receptor to induce ERK signaling and increase the expression of genes that promote liver fibrosis. The FDA-approved drug metformin, an ANGPTL8 inhibitor, inhibited HFD-induced liver fibrosis in vivo. CONCLUSIONS Our data support that ANGPTL8 is a proinflammatory factor that accelerates NAFLD-associated liver fibrosis induced by HFD. The serum ANGPTL8 level may be a potential and specific diagnostic marker for liver fibrosis, and targeting ANGPTL8 holds great promise for developing innovative therapies to treat NAFLD-associated liver fibrosis.
Collapse
Affiliation(s)
- Zongli Zhang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yue Yuan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lin Hu
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jian Tang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhongji Meng
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Shiyan, Hubei 442000, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yujiu Gao
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shinan Ma
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xiaoli Wang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yahong Yuan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiufang Zhang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Xuzhi Ruan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Xingrong Guo
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
6
|
Yu Y, He C, Tan S, Huang M, Guo Y, Li M, Zhang Q. MicroRNA-137-3p Improves Nonalcoholic Fatty Liver Disease through Activating AMPK α. Anal Cell Pathol (Amst) 2021; 2021:4853355. [PMID: 35004133 PMCID: PMC8731301 DOI: 10.1155/2021/4853355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide and can develop to nonalcoholic steatohepatitis and later hepatic cirrhosis with a high prevalence to hepatocellular carcinoma. Oxidative stress and chronic hepatic inflammation are implicated in the pathogenesis of NAFLD. MicroRNA-137-3p (miR-137-3p) are associated with oxidative stress and inflammation; however, its role and mechanism in NAFLD remain unclear. Mice were fed with a high-fat diet (HFD) for 24 weeks to establish the NAFLD model. To overexpress or suppress hepatic miR-137-3p expression, mice were intraperitoneally injected with the agomir, antagomir, or respective controls of miR-137-3p at a dose of 100 mg/kg weekly for 6 consecutive weeks before the mice were sacrificed. To validate the involvement of AMP-activated protein kinase alpha (AMPKα) or cAMP-specific phosphodiesterase 4D (PDE4D), HFD mice were intraperitoneally injected with 20 mg/kg compound C or 0.5 mg/kg rolipram every other day for 8 consecutive weeks before the mice were sacrificed. Hepatic miR-137-3p expression was significantly decreased in mice upon HFD stimulation. miR-137-3p agomir alleviated, while miR-137-3p antagomir facilitated HFD-induced oxidative stress, inflammation, and hepatic dysfunction in mice. Mechanistically, we revealed that miR-137-3p is directly bound to the 3'-untranslated region of PDE4D and subsequently increased hepatic cAMP level and protein kinase A activity, thereby activating the downstream AMPKα pathway. In summary, miR-137-3p improves NAFLD through activating AMPKα and it is a promising therapeutic candidate to treat NAFLD.
Collapse
Affiliation(s)
- Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Chunping He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Mengjun Huang
- Department of Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Yitian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|