1
|
Cai LQ, Li XC, Wang YY, Chen YX, Zhu XY, Zuo ZY, Si-Ma YQ, Lin YN, Li XK, Huang XY. Investigation of Metabolic and Inflammatory Disorder in the Aging FGF21 Knockout Mouse. Inflammation 2024; 47:2173-2195. [PMID: 38653921 PMCID: PMC11607023 DOI: 10.1007/s10753-024-02032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Aging is a physiological condition accomplished with persistent low-grade inflammation and metabolic disorders. FGF21 has been reported to act as a potent longevity determinant, involving inflammatory response and energy metabolism. In this study, we engineered aging FGF21 knockout mice of 36-40 weeks and observed that FGF21 deficiency manifests a spontaneous inflammatory response of lung and abnormal accumulation of lipids in liver. On one hand, inflamed state in lungs and increased circulating inflammatory cytokines were found in FGF21 knockout mice of 36-40 weeks. To evaluate the ability of FGF21 to suppress inflammation, a subsequent study found that FGF21 knockout aggravated LPS-induced pulmonary exudation and inflammatory infiltration in mice, while exogenous administration of FGF21 reversed these malignant phenotypes by enhancing microvascular endothelial junction. On the other hand, FGF21 knockout induces fatty liver in aging mice, characterized by excessive accumulation of triglycerides within hepatocytes. Further quantitative metabolomics and lipidomics analysis revealed perturbed metabolic profile in liver lacking FGF21, including disrupted glucose and lipids metabolism, glycerophospholipid metabolism, and amino acid metabolism. Taken together, this investigation reveals the protective role of FGF21 during aging by weakening the inflammatory response and balancing energy metabolism.
Collapse
Affiliation(s)
- Lu-Qiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yu-Xin Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Zi-Yi Zuo
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Qun Si-Ma
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Nuo Lin
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiao-Kun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Zhang QY, Liu HX. Insights into the role of FGF21 in coronary heart disease. Int J Biol Macromol 2024; 282:136911. [PMID: 39476920 DOI: 10.1016/j.ijbiomac.2024.136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/11/2024]
Abstract
Coronary heart disease (CHD) remains a leading cause of global mortality, with an alarming increase in its incidence among the younger population in recent years. This has amplified the need for early diagnostic markers and advances in therapeutic strategies to improve patient outcomes. Fibroblast growth factor 21 (FGF21), an endocrine hormone crucial for the regulation of metabolic homeostasis, has garnered significant attention over the past decade, owing to its role in cardiovascular health. FGF21 exerts cardioprotective effects through various mechanisms, including regulation of myocardial energy metabolism, prevention of cardiac cell death, suppression of inflammation, and reduction of oxidative stress in the heart. Given these properties, FGF21 shows considerable promise as a pharmacological agent for the management of CHD. Moreover, it has emerged as a promising biomarker for the diagnosis and prognostic assessment of CHD. This review aims to clarify the molecular mechanisms underlying the favorable effects of FGF21 on CHD and its related risk factors, thereby providing valuable insights for future research on the role of FGF21 in CHD management.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhou T, Long K, Chen J, Zhi L, Zhou X, Gao P. Global research progress of endothelial cells and ALI/ARDS: a bibliometric analysis. Front Physiol 2024; 15:1326392. [PMID: 38774649 PMCID: PMC11107300 DOI: 10.3389/fphys.2024.1326392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe respiratory conditions with complex pathogenesis, in which endothelial cells (ECs) play a key role. Despite numerous studies on ALI/ARDS and ECs, a bibliometric analysis focusing on the field is lacking. This study aims to fill this gap by employing bibliometric techniques, offering an overarching perspective on the current research landscape, major contributors, and emerging trends within the field of ALI/ARDS and ECs. Methods Leveraging the Web of Science Core Collection (WoSCC) database, we conducted a comprehensive search for literature relevant to ALI/ARDS and ECs. Utilizing Python, VOSviewer, and CiteSpace, we performed a bibliometric analysis on the corpus of publications within this field. Results This study analyzed 972 articles from 978 research institutions across 40 countries or regions, with a total of 5,277 authors contributing. These papers have been published in 323 different journals, spanning 62 distinct research areas. The first articles in this field were published in 2011, and there has been a general upward trend in annual publications since. The United States, Germany, and China are the principal contributors, with Joe G. N. Garcia from the University of Arizona identified as the leading authority in this field. American Journal of Physiology-Lung Cellular and Molecular Physiology has the highest publication count, while Frontiers in Immunology has been increasingly focusing on this field in recent years. "Cell Biology" stands as the most prolific research area within the field. Finally, this study identifies endothelial glycocalyx, oxidative stress, pyroptosis, TLRs, NF-κB, and NLRP3 as key terms representing research hotspots and emerging frontiers in this field. Conclusion This bibliometric analysis provides a comprehensive overview of the research landscape surrounding ALI/ARDS and ECs. It reveals an increasing academic focus on ALI/ARDS and ECs, particularly in the United States, Germany, and China. Our analysis also identifies several emerging trends and research hotspots, such as endothelial glycocalyx, oxidative stress, and pyroptosis, indicating directions for future research. The findings can guide scholars, clinicians, and policymakers in targeting research gaps and setting priorities to advance the field.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wang T, Zhuang Y, Yu C, Wang Z, Liu Y, Xu Q, Liu K, Li Y. D-beta-hydroxybutyrate up-regulates Claudin-1 and alleviates the intestinal hyperpermeability in lipopolysaccharide-treated mice. Tissue Cell 2024; 87:102343. [PMID: 38442546 DOI: 10.1016/j.tice.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.
Collapse
Affiliation(s)
- Ting Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Chenglong Yu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China
| | - Zhaobo Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Hebei, People's Republic of China
| | - Qian Xu
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Kun Liu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Cai M, Ye H, Zhu X, Li X, Cai L, Jin J, Chen Q, Shi Y, Yang L, Wang L, Huang X. Fibroblast Growth Factor 21 Relieves Lipopolysaccharide-Induced Acute Lung Injury by Suppressing JAK2/STAT3 Signaling Pathway. Inflammation 2024; 47:209-226. [PMID: 37864659 PMCID: PMC10799097 DOI: 10.1007/s10753-023-01905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/23/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening disease without an effective drug at present. Fibroblast growth factor 21 (FGF21) was reported to be protective against inflammation in metabolic disease in recent studies. However, the role of FGF21 in ALI has been rarely investigated. In this study, it was found that the expression of FGF21 was markedly increased in lung tissue under lipopolysaccharide (LPS) stimulation in vivo, whereas it was decreased in lung epithelial cells under LPS stimulation in vitro. Therefore, our research aimed to elucidate the potential role of FGF21 in LPS-induced ALI and to detect possible underlying mechanisms. The results revealed that the deficiency of FGF21 aggravated pathological damage, inflammatory infiltration, and pulmonary function in LPS-induced ALI, while exogenous administration of FGF21 improved these manifestations. Moreover, through RNA sequencing and enrichment analysis, it was unveiled that FGF21 might play a protective role in LPS-induced ALI via JAK2/STAT3 signaling pathway. The therapeutic effect of FGF21 was weakened after additional usage of JAK2 activator in vivo. Further investigation revealed that FGF21 significantly inhibited STAT3 phosphorylation and impaired the nuclear translocation of STAT3 in vitro. In addition, the aggravation of inflammation caused by silencing FGF21 can be alleviated by JAK2 inhibitor in vitro. Collectively, these findings unveil a potent protective effect of FGF21 against LPS-induced ALI by inhibiting the JAK2/STAT3 pathway, implying that FGF21 might be a novel and effective therapy for ALI.
Collapse
Affiliation(s)
- Mengsi Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Huihui Ye
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiayan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiuchun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Luqiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Jiajia Jin
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Qiwen Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Yuzhe Shi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Lehe Yang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Liangxing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou Medical University, Xuefu North Street, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
7
|
Zhao Z, Cui X, Liao Z. Mechanism of fibroblast growth factor 21 in cardiac remodeling. Front Cardiovasc Med 2023; 10:1202730. [PMID: 37416922 PMCID: PMC10322220 DOI: 10.3389/fcvm.2023.1202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Cardiac remodeling is a basic pathological process that enables the progression of multiple cardiac diseases to heart failure. Fibroblast growth factor 21 is considered a regulator in maintaining energy homeostasis and shows a positive role in preventing damage caused by cardiac diseases. This review mainly summarizes the effects and related mechanisms of fibroblast growth factor 21 on pathological processes associated with cardiac remodeling, based on a variety of cells of myocardial tissue. The possibility of Fibroblast growth factor 21 as a promising treatment for the cardiac remodeling process will also be discussed.
Collapse
Affiliation(s)
- Zeyu Zhao
- Queen Mary College, Nanchang University, Nanchang, China
| | - Xuemei Cui
- Fourth Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Deng M, Tong R, Bian Y, Hou G. Astaxanthin attenuates cigarette smoking-induced oxidative stress and inflammation in a sirtuin 1-dependent manner. Biomed Pharmacother 2023; 159:114230. [PMID: 36696799 DOI: 10.1016/j.biopha.2023.114230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress and chronic inflammation play key roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and anti-inflammatory effects This study aimed to explore the protective role and underlying mechanism of AXT in the pathogenesis of COPD. In this study, we found AXT alleviated pulmonary emphysema in a CS-exposed mouse model and regulated the expression of MMP-9/TIMP-1. And, AXT attenuates CSE-induced small airway fibrosis. Meanwhile, AXT inhibited Nrf2-modulated oxidative stress and the p65 NF-κB-regulated inflammatory pathway in both the mouse model and CSE-treated HBE cells. Mechanistically, AXT could directly bind to SIRT1 (the binding energy of the complex was -8.8 kcal/mol) and regulate the deacetylation activity of SIRT1. Finally, by activating SIRT1 deacetylation, AXT deacetylated Nrf2 and contributed to its action of reducing oxidative stress by generating antioxidant enzymes, and inhibiting p65 NF-κB transcriptional activity to suppress the inflammatory response. Our results show that treatment with AXT significantly reverses the oxidative stress and inflammation induced by cigarette smoke both in vivo and in vitro in a sirtuin 1-dependent manner.
Collapse
Affiliation(s)
- Mingming Deng
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yiding Bian
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China..
| |
Collapse
|