1
|
Yasui GS, Ferreira do Nascimento N, Pereira-Santos M, dos Santos Silva AP, Coelho GCZ, Visintin JA, Porto-Foresti F, Okada Nakaghi LS, Vianna NC, Carvalho GB, Monzani PS, López LS, Senhorini JA. Establishing a model fish for the Neotropical region: The case of the yellowtail tetra Astyanax altiparanae in advanced biotechnology. Front Genet 2022; 13:903990. [PMID: 36531235 PMCID: PMC9749136 DOI: 10.3389/fgene.2022.903990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2023] Open
Abstract
The use of model organisms is important for basic and applied sciences. Several laboratory species of fishes are used to develop advanced technologies, such as the zebrafish (Danio rerio), the medaka (Oryzias latipes), and loach species (Misgurnus spp.). However, the application of these exotic species in the Neotropical region is limited due to differences in environmental conditions and phylogenetic distances. This situation emphasizes the establishment of a model organism specifically for the Neotropical region with the development of techniques that may be applicable to other Neotropical fish species. In this work, the previous research efforts are described in order to establish the yellowtail tetra Astyanax altiparanae as a model laboratory species for both laboratory and aquaculture purposes. Over the last decade, starting with artificial fertilization, the yellowtail tetra has become a laboratory organism for advanced biotechnology, such as germ cell transplantation, chromosome set manipulation, and other technologies, with applications in aquaculture and conservation of genetic resources. Nowadays, the yellowtail tetra is considered the most advanced fish with respect to fish biotechnology within the Neotropical region. The techniques developed for this species are being used in other related species, especially within the characins class.
Collapse
Affiliation(s)
- George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | | | - Matheus Pereira-Santos
- Federal Rural University of Rio de Janeiro, Animal Science Graduate Program, Seropédica, Brazil
| | - Amanda Pereira dos Santos Silva
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Antônio Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Porto-Foresti
- Department of Biological Sciences, São Paulo State University, São Paulo, Brazil
| | | | | | - Gabriela Braga Carvalho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| |
Collapse
|
2
|
Domestication is associated with differential expression of pikeperch egg proteins involved in metabolism, immune response and protein folding. Animal 2020; 14:2336-2350. [PMID: 32525470 DOI: 10.1017/s1751731120001184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Domestication is a condition in which the breeding, care and feeding of animals are, at least in part, controlled by humans. Information regarding the changes in the protein composition of eggs in response to domestication is very limited. Such data are prerequisite for improvements in the reproduction of domesticated fish. The aim of this study was to examine the impact of domestication on the proteome of pikeperch eggs using two-dimensional differential in-gel electrophoresis. We analysed high-quality eggs from domesticated and wild pikeperch fish to reveal proteins that were presumably only related to the domestication process and not to the quality of eggs. Here, we show that domestication has a profound impact on the protein profile of pikeperch eggs. We identified 66 differentially abundant protein spots, including 27 spots that were more abundant in wild-caught pikeperch eggs and 39 spots that were enriched in eggs collected from domesticated females. Eggs originating from wild-caught females showed higher expression levels of proteins involved in folding, apoptotic process, purine metabolism and immune response, whereas eggs of domesticated females showed higher expression levels of proteins that participated mainly in metabolism. The changes in metabolic proteins in eggs from domesticated females can reflect the adaptation of pikeperch to commercial diets, which have profoundly distinct compositions compared with natural diets. The decrease in the abundance of proteins related to immune response in eggs from the domesticated population suggests that domestication may lead to disturbances in defence mechanisms. In turn, the lower abundance of heat shock proteins in eggs of domesticated fish may indicate their adaptation to stable farming conditions and reduced environmental stressors or their better tolerance of stress from breeding. The proteins identified in this study can increase our knowledge concerning the mechanism of the pikeperch domestication process.
Collapse
|
3
|
McClelland EK, Chan MTT, Lin X, Sakhrani D, Vincelli F, Kim JH, Heath DD, Devlin RH. Loci associated with variation in gene expression and growth in juvenile salmon are influenced by the presence of a growth hormone transgene. BMC Genomics 2020; 21:185. [PMID: 32106818 PMCID: PMC7045383 DOI: 10.1186/s12864-020-6586-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth regulation is a complex process influenced by genetic and environmental factors. We examined differences between growth hormone (GH) transgenic (T) and non-transgenic (NT) coho salmon to elucidate whether the same loci were involved in controlling body size and gene expression phenotypes, and to assess whether physiological transformations occurring from GH transgenesis were under the influence of alternative pathways. The following genomic techniques were used to explore differences between size classes within and between transgenotypes (T vs. NT): RNA-Seq/Differentially Expressed Gene (DEG) analysis, quantitative PCR (qPCR) and OpenArray analysis, Genotyping-by-Sequencing, and Genome-Wide Association Study (GWAS). RESULTS DEGs identified in comparisons between the large and small tails of the size distributions of T and NT salmon (NTLarge, NTSmall, TLarge and TSmall) spanned a broad range of biological processes, indicating wide-spread influence of the transgene on gene expression. Overexpression of growth hormone led to differences in regulatory loci between transgenotypes and size classes. Expression levels were significantly greater in T fish at 16 of 31 loci and in NT fish for 10 loci. Eleven genes exhibited different mRNA levels when the interaction of size and transgenotype was considered (IGF1, IGFBP1, GH, C3-4, FAS, FAD6, GLUT1, G6PASE1, GOGAT, MID1IP1). In the GWAS, 649 unique SNPs were significantly associated with at least one study trait, with most SNPs associated with one of the following traits: C3_4, ELA1, GLK, IGF1, IGFBP1, IGFII, or LEPTIN. Only 1 phenotype-associated SNP was found in common between T and NT fish, and there were no SNPs in common between transgenotypes when size was considered. CONCLUSIONS Multiple regulatory loci affecting gene expression were shared between fast-growing and slow-growing fish within T or NT groups, but no such regulatory loci were found to be shared between NT and T groups. These data reveal how GH overexpression affects the regulatory responses of the genome resulting in differences in growth, physiological pathways, and gene expression in T fish compared with the wild type. Understanding the complexity of regulatory gene interactions to generate phenotypes has importance in multiple fields ranging from applications in selective breeding to quantifying influences on evolutionary processes.
Collapse
Affiliation(s)
- Erin Kathleen McClelland
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada. .,, EKM Consulting 730 Drake St, Nanaimo, BC, V9S 2T1, Canada.
| | - Michelle T T Chan
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Xiang Lin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Felicia Vincelli
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.,Korea Polar Research Institute (KOPRI), 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
4
|
Kodama M, Naish KA, Devlin RH. Influence of a growth hormone transgene on the genetic architecture of growth-related traits: A comparative analysis between transgenic and wild-type coho salmon. Evol Appl 2018; 11:1886-1900. [PMID: 30459836 PMCID: PMC6231474 DOI: 10.1111/eva.12692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genetic engineering has been increasingly applied to many commercially important plant and animal species, generating phenotypic changes that are not observed in natural populations and creating genetic interactions that have not experienced natural selection. The degree to and way in which such human-induced genetic variation interacts with the rest of the genome is currently largely unknown. Integrating such information into ecological and risk assessment frameworks is crucial to understand the potential effects of genetically modified organisms in natural environments. Here, we performed QTL mapping to investigate the genetic architecture of growth-related traits in nontransgenic (NT) and growth hormone transgenic (T) coho salmon with large changes in growth and related physiology, with the aim of identifying how an inserted transgene might influence the opportunity for selection. These fish shared the same parental genetic background, thus allowing us to determine whether the same or different loci influence these traits within the two groups. The use of over 1,700 loci, derived from restriction site-associated DNA sequencing, revealed that different genomic regions were linked with growth over time between the two groups. Additionally, the effect sizes of detected QTL appear to have been influenced by the transgene. Direct comparison of QTL between the T and NT fish during two size-matched periods identified little overlap in their location. Taken together, the results showed that the transgene altered the genetic basis of growth-related traits in this species. The study has important implications for effective conservation and management of wild populations experiencing introduction of transgenes. Evolutionary changes and their ecological consequences may occur at different rates and in different directions in NT versus T individuals in response to selection. Thus, assessments of phenotypic change, and hence ecological risk, should be determined periodically to evaluate whether initial estimates made with founder strains remain valid.
Collapse
Affiliation(s)
- Miyako Kodama
- Fisheries and Oceans CanadaWest VancouverBritish ColumbiaCanada
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattle, Washington
- Present address:
Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Present address:
Genome Research and Molecular BiomedicineDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattle, Washington
| | | |
Collapse
|
5
|
Causey DR, Kim JH, Stead DA, Martin SAM, Devlin RH, Macqueen DJ. Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth. J Proteomics 2018; 192:114-124. [PMID: 30153513 PMCID: PMC7086150 DOI: 10.1016/j.jprot.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
In fish used for food production and scientific research, fast growth can be achieved via selective breeding or induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health parameters. We addressed this knowledge gap using skeletal muscle proteomics in coho salmon (Oncorhynchus kisutch), hypothesising that i) selective breeding and GHT are underpinned by both parallel and unique changes in growth systems, and ii) rapidly-growing fish strains have lowered scope to allocate resources towards immune function. Quantitative profiling of GHT and growth-selected strains was done in comparison to wild-type after injection with PBS (control) or Poly I:C (to mimic infection). We identified remodelling of the muscle proteome in each growth-enhanced strain that was strikingly non-overlapping. GHT was characterized by focal upregulation of systems driving protein synthesis, while the growth-selected fish presented a larger and more diverse set of changes, consistent with complex alterations to many metabolic and cellular pathways. Poly I:C had little detectable effect on the muscle proteome. This study demonstrates that distinct proteome profiles can explain outwardly similar enhanced growth phenotypes, improving our understanding of growth mechanisms in anthropogenic animal strains. Significance This work provides the first proteomic insights into mechanisms underpinning different anthropogenic routes to rapid growth in salmon. High-throughput proteomic profiling was used to reveal changes supporting enhanced growth, comparing skeletal muscle of growth hormone transgenic (GHT) and selectively-bred salmon strains with their wild-type counterparts. Contrasting past mRNA-level comparisons of the same fish strains, our data reveals a surprisingly substantial proteomic divergence between the GHT and selectively bred strains. The findings demonstrate that many unique molecular mechanisms underlie growth-enhanced phenotypes in different types of fish strain used for food production and scientific research. Mechanistic basis for rapid growth poorly understood in fish. Comparative proteomic profiling done in fish strains showing highly enhanced growth. Distinct basis for enhanced growth comparing transgenic and domesticated fish strains. Highly distinct proteome profiles may explain outwardly similar growth phenotypes. Study enhances understanding of how rapid growth is achieved in anthropogenic animal strains.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada; Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, Rowett Institute, Aberdeen, UK
| | | | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|