1
|
Rowe AG, Bataille CP, Baleka S, Combs EA, Crass BA, Fisher DC, Ghosh S, Holmes CE, Krasinski KE, Lanoë F, Murchie TJ, Poinar H, Potter B, Rasic JT, Reuther J, Smith GM, Spaleta KJ, Wygal BT, Wooller MJ. A female woolly mammoth's lifetime movements end in an ancient Alaskan hunter-gatherer camp. SCIENCE ADVANCES 2024; 10:eadk0818. [PMID: 38232155 PMCID: PMC10793946 DOI: 10.1126/sciadv.adk0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Woolly mammoths in mainland Alaska overlapped with the region's first people for at least a millennium. However, it is unclear how mammoths used the space shared with people. Here, we use detailed isotopic analyses of a female mammoth tusk found in a 14,000-year-old archaeological site to show that she moved ~1000 kilometers from northwestern Canada to inhabit an area with the highest density of early archaeological sites in interior Alaska until her death. DNA from the tusk and other local contemporaneous archaeological mammoth remains revealed that multiple mammoth herds congregated in this region. Early Alaskans seem to have structured their settlements partly based on mammoth prevalence and made use of mammoths for raw materials and likely food.
Collapse
Affiliation(s)
- Audrey G. Rowe
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, AK, USA
- Department of Marine Biology, University of Alaska Fairbanks, AK, USA
| | - Clement P. Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ontario, Canada
| | - Sina Baleka
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Daniel C. Fisher
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| | - Sambit Ghosh
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, AK, USA
| | | | | | - François Lanoë
- Bureau of Applied Research in Anthropology, University of Arizona, Tucson, AZ, USA
| | - Tyler J. Murchie
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Departments of Biochemistry and Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ben Potter
- Department of Anthropology, University of Alaska Fairbanks, AK, USA
| | | | - Joshua Reuther
- University of Alaska Museum of the North, Fairbanks, AK, USA
- Department of Anthropology, University of Alaska Fairbanks, AK, USA
| | - Gerad M. Smith
- Department of Anthropology and Geography, University of Alaska Anchorage, AK, USA
| | - Karen J. Spaleta
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, AK, USA
| | - Brian T. Wygal
- Department of Anthropology, Adelphi University, Garden City, NY, USA
| | - Matthew J. Wooller
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, AK, USA
- Department of Marine Biology, University of Alaska Fairbanks, AK, USA
| |
Collapse
|
2
|
Hiltunen TA, Stien A, Väisänen M, Ropstad E, Aspi JO, Welker JM. Svalbard reindeer winter diets: Long-term dietary shifts to graminoids in response to a changing climate. GLOBAL CHANGE BIOLOGY 2022; 28:7009-7022. [PMID: 36071549 PMCID: PMC9826046 DOI: 10.1111/gcb.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.
Collapse
Affiliation(s)
| | - Audun Stien
- Department of Arctic and Marine Biology, Fram CentreThe Arctic University of NorwayTromsøNorway
| | - Maria Väisänen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Arctic CentreUniversity of LaplandRovaniemiFinland
| | - Erik Ropstad
- Department of Production Animal Clinical SciencesNorwegian University of Life SciencesÅsNorway
| | - Jouni O. Aspi
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Jeffery M. Welker
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- UArcticRovaniemiFinland
- Department of Biological SciencesUniversity of Alaska AnchorageAnchorageAlaskaUSA
| |
Collapse
|
3
|
Ogilvy C, Constantine R, Bury SJ, Carroll EL. Diet variation in a critically endangered marine predator revealed with stable isotope analysis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220470. [PMID: 35991335 PMCID: PMC9382206 DOI: 10.1098/rsos.220470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the foraging ecology of animals gives insights into their trophic relationships and habitat use. We used stable isotope analysis to understand the foraging ecology of a critically endangered marine predator, the Māui dolphin. We analysed carbon and nitrogen isotope ratios of skin samples (n = 101) collected from 1993 to 2021 to investigate temporal changes in diet and niche space. Genetic monitoring associated each sample with a DNA profile which allowed us to assess individual and population level changes in diet. Potential prey and trophic level indicator samples were also collected (n = 166; 15 species) and incorporated in Bayesian mixing models to estimate importance of prey types to Māui dolphin diet. We found isotopic niche space had decreased over time, particularly since the 2008 implementation of a Marine Mammal Sanctuary. We observed a decreasing trend in ∂13C and ∂15N values, but this was not linear and several fluctuations in isotope values occurred over time. The largest variation in isotope values occurred during an El Niño event, suggesting that prey is influenced by climate-driven oceanographic variables. Mixing models indicated relative importance of prey remained constant since 2008. The isotopic variability observed here is not consistent with individual specialization, rather it occurs at the population level.
Collapse
Affiliation(s)
- Courtney Ogilvy
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Institute of Marine Science, University of Auckland, Auckland 1010, New Zealand
| | - Sarah J. Bury
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand
| | - Emma L. Carroll
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Keogh MJ, Nicholson KL, Skinner JP. Relationships between age, diet, and stress-related hormones and reproduction in American marten ( Martes americana). J Mammal 2022. [DOI: 10.1093/jmammal/gyac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
American marten (Martes americana) in Interior Alaska are at the northwestern limit of their North American range. To investigate factors that may be associated with reproduction we determined the cementum age and the presence or absence of blastocysts in 118 female martens for 3 years (2012, 2014, and 2016) in two regions. For each marten we collected fur samples and measured steroid hormone concentrations (cortisol, testosterone, and progesterone) and stable isotopes (δ15N and δ13C values, a proxy for diet). These parameters reflect the diet and endocrine activity between June and October when fur is grown. We also collected two claws from a subset of 39 female marten from one region in 2012 and 2014. Progesterone concentrations were measured in one whole claw and from a second claw divided into proximal (recent growth) and distal sections. Differences in the probability of blastocysts being present were associated with geographic region and sample year suggesting that reproduction in female marten varies on a fine scale. We found the that presence of blastocysts was positively associated with marten age and δ15N values in fur but negatively associated with fur cortisol concentrations. These findings suggest that the likelihood a female marten will reproduce in a given year is influenced, in part, by the proportion of protein in their diet and stressors encountered during late summer and fall, months before active gestation begins.
Collapse
Affiliation(s)
- Mandy J Keogh
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Douglas, Alaska , USA
| | - Kerry L Nicholson
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Fairbanks, Alaska , USA
| | - John P Skinner
- Division of Wildlife Conservation, Alaska Department of Fish and Game , Anchorage, Alaska , USA
| |
Collapse
|
5
|
Metcalfe JZ. C 3 plant isotopic variability in a boreal mixed woodland: implications for bison and other herbivores. PeerJ 2021; 9:e12167. [PMID: 34631314 PMCID: PMC8466085 DOI: 10.7717/peerj.12167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Plant isotopic baselines are critical for accurately reconstructing ancient diets and environments and for using stable isotopes to monitor ecosystem conservation. This study examines the stable carbon and nitrogen isotope compositions (δ 13C, δ 15N) of terrestrial C3 plants in Elk Island National Park (EINP), Alberta, Canada, with a focus on plants consumed by grazers. EINP is located in a boreal mixed woodland ecozone close to the transition area between historic wood and plains bison habitats, and is currently home to separate herds of wood and plains bison. For this study, 165 C3 plant samples (grasses, sedges, forbs, shrubs, and horsetail) were collected from three habitat types (open, closed, and wet) during two seasons (summer and fall). There were no statistically significant differences in the δ 13C or δ 15N values of grasses, sedges, shrubs and forbs. On the other hand, plant δ 13C and δ 15N values varied among habitats and plant parts, and the values increased from summer to fall. These results have several implications for interpreting herbivore tissue isotopic compositions: (1) consuming different proportions of grasses, sedges, shrubs, and forbs might not result in isotopic niche partitioning, (2) feeding in different microhabitats or selecting different parts of the same types of plants could result in isotopic niche partitioning, and (3) seasonal isotopic changes in herbivore tissues could reflect seasonal isotopic changes in dietary plants rather than (or in addition to) changes in animal diet or physiology. In addition, the positively skewed plant δ 15N distributions highlight the need for researchers to carefully evaluate the characteristics of their distributions prior to reporting data (e.g., means, standard deviations) or applying statistical models (e.g., parametric tests that assume normality). Overall, this study reiterates the importance of accessing ecosystem-specific isotopic baselines for addressing research questions in archaeology, paleontology, and ecology.
Collapse
Affiliation(s)
- Jessica Z Metcalfe
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
6
|
Wooller MJ, Bataille C, Druckenmiller P, Erickson GM, Groves P, Haubenstock N, Howe T, Irrgeher J, Mann D, Moon K, Potter BA, Prohaska T, Rasic J, Reuther J, Shapiro B, Spaleta KJ, Willis AD. Lifetime mobility of an Arctic woolly mammoth. Science 2021; 373:806-808. [PMID: 34385399 DOI: 10.1126/science.abg1134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Little is known about woolly mammoth (Mammuthus primigenius) mobility and range. Here we use high temporal resolution sequential analyses of strontium isotope ratios along an entire 1.7-meter-long tusk to reconstruct the movements of an Arctic woolly mammoth that lived 17,100 years ago, during the last ice age. We use an isotope-guided random walk approach to compare the tusk's strontium and oxygen isotope profiles to isotopic maps. Our modeling reveals patterns of movement across a geographically extensive range during the animal's ~28-year life span that varied with life stages. Maintenance of this level of mobility by megafaunal species such as mammoth would have been increasingly difficult as the ice age ended and the environment changed at high latitudes.
Collapse
Affiliation(s)
- Matthew J Wooller
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, AK, USA. .,Department of Marine Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Clement Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada. .,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Patrick Druckenmiller
- University of Alaska Museum of the North, Fairbanks, AK, USA.,Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Gregory M Erickson
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Pamela Groves
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Norma Haubenstock
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Timothy Howe
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Johanna Irrgeher
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Daniel Mann
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Katherine Moon
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ben A Potter
- Arctic Studies Center, Liaocheng University, Liaocheng City, Shandong Province, China
| | - Thomas Prohaska
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | | | - Joshua Reuther
- University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Karen J Spaleta
- Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Sykut M, Pawełczyk S, Borowik T, Pokorny B, Flajšman K, Hunink T, Niedziałkowska M. Environmental factors shaping stable isotope signatures of modern red deer (Cervus elaphus) inhabiting various habitats. PLoS One 2021; 16:e0255398. [PMID: 34388162 PMCID: PMC8362983 DOI: 10.1371/journal.pone.0255398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Stable isotope analyses of bone collagen are often used in palaeoecological studies to reveal environmental conditions in the habitats of different herbivore species. However, such studies require valuable reference data, obtained from analyses of modern individuals, in habitats of well-known conditions. In this article, we present the stable carbon and nitrogen isotope composition of bone collagen from modern red deer (N = 242 individuals) dwelling in various habitats (N = 15 study sites) in Europe. We investigated which of the selected climatic and environmental factors affected the δ13C and δ15N values in bone collagen of the studied specimens. Among all analyzed factors, the percent of forest cover influenced the carbon isotopic composition most significantly, and decreasing forest cover caused an increase in δ13C values. The δ15N was positively related to the proportion of open area and (only in the coastal areas) negatively related to the distance to the seashore. Using rigorous statistical methods and a large number of samples, we confirmed that δ13C and δ15N values can be used as a proxy of past habitats of red deer.
Collapse
Affiliation(s)
- Maciej Sykut
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Sławomira Pawełczyk
- Division of Geochronology and Environmental Isotopes, GADAM Centre of Excellence, Institute of Physics, Center for Science and Education, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Borowik
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Boštjan Pokorny
- Environmental Protection College, Velenje, Slovenia
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | - Tjibbe Hunink
- Staatsbosbeheer / Flevoland, Lelystad, The Netherlands
| | | |
Collapse
|