1
|
Dal Martello R, Wang YV, Mir Makhamad B, Spengler RN, Fuller DQ. Contrasting diachronic regional trends in cereal grain evolution across Eurasia: a metadata analysis of linear morphometrics from the ninth millennium BCE to today. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240193. [PMID: 40370029 PMCID: PMC12079130 DOI: 10.1098/rstb.2024.0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 05/16/2025] Open
Abstract
The domestication of grain crops is among the most important phenomena to facilitate humanity's cultural development, and seed size increases are taken as one of the earliest domestication traits. Much remains unknown about the ecological drivers and cultural mechanisms surrounding this trait, but morphometric analyses have been crucial to investigate the topic for decades. Measurements on ancient cereal grains show that they evolved to produce larger seeds in their region of origin prior to dispersing beyond their progenitor range. This paper takes a transcontinental (Europe and Asia), long-term approach to comparative morphometric data. Unpublished measurements from over 10 sites of barley, free-threshing wheat, broomcorn millet, and foxtail millet from Central Asia and China have been collected for this study. We have contrasted these with published data from Europe, southwest and Central, East and South Asia. We investigate whether these cereals evolved in parallel or divergent ways across different lineages after they dispersed from their centres of origin; we trace seed size changes from initial cultivation through their spread and eventual adaptation to novel environments. This comparative analysis allows us to discuss rates of evolution and highlight evolutionary trends within some of the most important cereal crops across the Eurasian continent.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Rita Dal Martello
- Asian and North African Studies Department, Ca' Foscari University of Venice, Venezia, Italy
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Yiming V. Wang
- Anthropogenic Ecology Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
- Institute of Geosciences, Friedrich-Schiller-Universitat Jena, Jena, Thüringen, Germany
| | - Basira Mir Makhamad
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Robert N. Spengler
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Dorian Q Fuller
- Institute of Archaeology, UCL, London, UK
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, People’s Republic of China
| |
Collapse
|
2
|
Fukunaga K, Abe A, Ito K, Oikawa K, Tsuji M, Kawase M. Latitudinal adaptation and dispersal pathway of foxtail millet suggested by geographical distribution of transposable elements inserted in the SiPRR37 gene. Genes Genet Syst 2024; 99:n/a. [PMID: 38797684 DOI: 10.1266/ggs.24-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
We investigated the variation and geographical distribution of the Pseudo-regulator response 37 (Setaria italica PRR37; SiPRR37) gene, which is involved in heading time (photoperiodism) in foxtail millet. An allele of the SiPRR37 gene, in which an approximately 4.9-kb transposable element (designated TE1) is inserted (a loss-of-function or reduction-of-function type), is distributed sporadically in East Asia and broadly in Southeast Asia and South Asia, implying that this gene is important in latitudinal adaptation. In addition, we found a new allele of SiPRR37 with an insertion of a 360-bp TE (TE2) at this locus and investigated the geographical distribution of this new type. This SiPRR37 allele with TE2 is distributed in Japan, Korea, Nepal, Iran and Turkey. Both TE1 and TE2 are useful markers for tracing foxtail millet dispersal pathways in Asia.
Collapse
Affiliation(s)
- Kenji Fukunaga
- Faculty of Bioresource Sciences, Prefectural University of Hiroshima
| | | | | | | | - Masaya Tsuji
- Graduate School of Comprehensive Scientific Research, Graduate School of Prefectural University of Hiroshima
| | - Makoto Kawase
- Faculty of Agriculture, Tokyo University of Agriculture
| |
Collapse
|
3
|
Jadhav Y, Thakur NR, Ingle KP, Ceasar SA. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. PHYSIOLOGIA PLANTARUM 2024; 176:e14349. [PMID: 38783512 DOI: 10.1111/ppl.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.
Collapse
Affiliation(s)
- Yashoda Jadhav
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
| | - Niranjan Ravindra Thakur
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
- Vasantrao Naik Marathwada Agricultural University, Parbhani, MS, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, KL, India
| |
Collapse
|
4
|
Fukunaga K, Kawase M. Crop Evolution of Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2024; 13:218. [PMID: 38256771 PMCID: PMC10819197 DOI: 10.3390/plants13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Studies on the domestication, genetic differentiation, and crop evolution of foxtail millet are reviewed in this paper. Several genetic studies were carried out to elucidate the genetic relationships among foxtail millet accessions originating mainly from Eurasia based on intraspecific hybrid pollen semi-sterility, isozymes, DNA markers, and single-nucleotide polymorphisms. Most studies suggest that China is the center of diversity of foxtail millet, and landraces were categorized into geographical groups. These results indicate that this millet was domesticated in China and spread over Eurasia, but independent origin in other regions cannot be ruled out. Furthermore, the evolution of genes was reviewed (i.e., the Waxy gene conferring amylose content in the endosperm, the Si7PPO gene controlling polyphenol oxidase, the HD1 and SiPRR37 genes controlling heading time, the Sh1 and SvLes1 genes involved in grain shattering, and the C gene controlling leaf sheath pigmentation), and the variation and distribution of these genes suggested complex patterns of evolution under human and/or natural selection.
Collapse
Affiliation(s)
- Kenji Fukunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Makoto Kawase
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan
| |
Collapse
|
5
|
Shigita G, Dung TP, Pervin MN, Duong TT, Imoh ON, Monden Y, Nishida H, Tanaka K, Sugiyama M, Kawazu Y, Tomooka N, Kato K. Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection. BREEDING SCIENCE 2023; 73:269-277. [PMID: 37840980 PMCID: PMC10570884 DOI: 10.1270/jsbbs.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/25/2023] [Indexed: 10/17/2023]
Abstract
Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset ("core collection") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.
Collapse
Affiliation(s)
- Gentaro Shigita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Life Science Systems, Technical University of Munich, Emil-Ramann Strasse 2, Freising 85354, Germany
| | - Tran Phuong Dung
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Mst. Naznin Pervin
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Thanh-Thuy Duong
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Hue City, Vietnam
| | - Odirich Nnennaya Imoh
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Katsunori Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Mitsuhiro Sugiyama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Yoichi Kawazu
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Ramesh P, Juturu VN, Yugandhar P, Pedersen S, Hemasundar A, Yolcu S, Chandra Obul Reddy P, Chandra Mohan Reddy CV, Veerabramha Chari P, Mohan R, Chandra Sekhar A. Molecular genetics and phenotypic assessment of foxtail millet ( Setaria italica (L.) P. Beauv.) landraces revealed remarkable variability of morpho-physiological, yield, and yield-related traits. Front Genet 2023; 14:1052575. [PMID: 36760993 PMCID: PMC9905688 DOI: 10.3389/fgene.2023.1052575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward's clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement.
Collapse
Affiliation(s)
- Palakurthi Ramesh
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vijaya Naresh Juturu
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Poli Yugandhar
- Plant Molecular Biology Laboratory, Indian Institute of Rice Research, Hyderabad, Telangana, India
| | - Sydney Pedersen
- Department of Biology, Mercyhurst University, Erie, PA, United States
| | - Alavilli Hemasundar
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Seher Yolcu
- Department of Life Sciences, Sogang University, Seoul, South Korea
| | - Puli Chandra Obul Reddy
- Plant Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | | - P. Veerabramha Chari
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Rajinikanth Mohan
- Department of Biology, Mercyhurst University, Erie, PA, United States,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| | - Akila Chandra Sekhar
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| |
Collapse
|
7
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
9
|
Fukunaga K, Nur MZ, Inoue T, Taketa S, Ichitani K. Phylogenetic analysis of the Si7PPO gene in foxtail millet, Setaria italica, provides further evidence for multiple origins of the negative phenol color reaction phenotype. Genes Genet Syst 2020; 95:191-199. [PMID: 32999130 DOI: 10.1266/ggs.20-00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To elucidate the diversity and evolution of the Si7PPO gene that controls phenol color reaction (Phr) in foxtail millet, Setaria italica, we analyzed sequence polymorphisms of the Si7PPO gene in 39 accessions consisting of foxtail millet landraces (32 accessions) and their wild ancestor ssp. viridis (seven accessions) collected from various regions in Europe and Asia. The accessions included wild type (positive Phr) and three different types of loss-of-function phenotype (negative Phr), "stop codon type", "TE1-insertion type" and "6-bp duplication type", found in our previous study. We constructed a phylogenetic tree of the gene and found that accessions with positive Phr showed higher genetic diversity at the nucleotide sequence level. We also found that the three different loss-of-function types formed different clusters, suggesting that landraces with negative Phr have multiple origins from three different lineages including both landrace and ssp. viridis accessions with positive Phr.
Collapse
Affiliation(s)
- Kenji Fukunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima
| | - Meili Zakiyah Nur
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima.,Jember University
| | - Takahiko Inoue
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima
| | - Shin Taketa
- Institute of Plant Science and Resources, Okayama University
| | | |
Collapse
|
10
|
Bhat RS, Shirasawa K, Monden Y, Yamashita H, Tahara M. Developing Transposable Element Marker System for Molecular Breeding. Methods Mol Biol 2020; 2107:233-251. [PMID: 31893450 DOI: 10.1007/978-1-0716-0235-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.
Collapse
Affiliation(s)
- R S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, India.
| | - K Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Y Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - H Yamashita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - M Tahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Structural Characterization of ABCB1, the Gene Underlying the d2 Dwarf Phenotype in Pearl Millet, Cenchrus Americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2019; 9:2497-2509. [PMID: 31208958 PMCID: PMC6686935 DOI: 10.1534/g3.118.200846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pearl millet is an important food crop in arid and semi-arid regions of South Asia and sub-Saharan Africa and is grown in Australia and the United States as a summer fodder crop. The d2 dwarf germplasm has been widely used in the last half-century to develop high-performing pearl millet hybrids. We previously mapped the d2 phenotype to a 1.6 cM region in linkage group (LG) 4 and identified the ABCB1 gene as a candidate underlying the trait. Here, we report the sequence, structure and expression of ABCB1 in tall (D2D2) and d2 dwarf (d2d2) germplasm. The ABCB1 allele in d2 dwarfs differs from that in tall inbreds by the presence of two different high copy transposable elements, one in the coding region and the second located 664 bp upstream of the ATG start codon. These transposons were present in all d2 dwarfs tested that were reported to be of independent origin and absent in the analyzed wild-type tall germplasm. We also compared the expression profile of this gene in different organs of multiple tall and d2 dwarf inbreds, including the near-isogenic inbreds at the d2 locus, Tift 23B (D2D2) and Tift 23DB (d2d2). Heterologous transformation of the tall (Ca_ABCB1) and the d2 dwarf (Ca_abcb1) pearl millet alleles in the Arabidopsis double mutant abcb1abcb19 showed that the pearl millet D2 but not the d2 allele complements the Arabidopsis abcb1 mutation. Our studies also show the importance of the COOH-terminal 22 amino acids of the ABCB1 protein in either protein function or stability.
Collapse
|
12
|
Ghimire BK, Yu CY, Kim SH, Chung IM. Assessment of Diversity in the Accessions of Setaria italica L. Based on Phytochemical and Morphological Traits and ISSR Markers. Molecules 2019; 24:E1486. [PMID: 30991767 PMCID: PMC6514597 DOI: 10.3390/molecules24081486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
This study was carried out to evaluate genetic diversity, phenolic compound composition, and biological activity of Setaria italica L. collected from different parts of South Korea. Antioxidant potential of seeds was estimated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, and antimicrobial activity was determined by evaluating the minimum inhibitory concentration (MIC). Eight phenolic acids and 3 flavonoids were identified and quantified, among which myricetin and salicylic acid were the most dominant phytochemical compounds detected in the majority of accessions. The antioxidant potential of the leaf extracts of all the accessions was significantly higher (ranging from 32.33 ± 1.53 µg mL-¹ in SI-03 to 87.87 ± 1.63 µg mL-¹) in SI-10 than that of the root, stem, or seeds. Among the 15 accessions, methanolic extracts of the SI-15 accession strongly suppressed the growth of Escherichia coli (250 µg mL-¹). Accessions SI-14 and SI-15 showed positive antimicrobial activity against all gram-positive bacteria. Interestingly, extracts of all accessions were more sensitive towards E. coli and Staphylococcus aureus, with MICs ranging from 250 to 1000 µg mL-¹. Three phenolic acids, namely chlorogenic acid, catechin, caffeic acid, naringin, hesperetin, and myricetin, were found to be moderately positively correlated with antioxidant activities. A wide range of diversity was observed in morphological traits, namely plant height (99.33 to 201.33 cm), culm length (67.10 to 160.00 cm), spike length (12.80 to 24.00 cm), 1000 seeds weight 1.44 to 2.91 g), bloom beginning (93.67 to 128.00 days), and full bloom (99.67 to 135 days). A dendogram generated from unweighted pair group method with arithmetic mean clustering (UPGMA) cluster analysis based on the morphological traits and inter simple sequence repeat (ISSR) marker data revealed three major groups. However, no clear correlation between these two different approaches was found. The average Shannon's information index value (I) was 0.492, and it ranged from 0 to 0.693. The average expected heterozygosity (He) was 0.335, and it ranged from 0 to 0.499. The substantial variation in the morphological traits, bioactive properties, and genetic diversity among the accessions may provide useful information for breeding programs attempting to obtain S. italica with improved bioactive properties.
Collapse
Affiliation(s)
- Bimal Kumar Ghimire
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| | - Chang Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Korea.
| | - Seung-Hyun Kim
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
13
|
Kuo SM, Chen YR, Yin SY, Ba QX, Tsai YC, Kuo WHJ, Lin YR. Waxy allele diversification in foxtail millet (Setaria italica) landraces of Taiwan. PLoS One 2018; 13:e0210025. [PMID: 30596758 PMCID: PMC6312202 DOI: 10.1371/journal.pone.0210025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.), the second most cultivated millet species, is well adapted to diverse environments and remains an important cereal food and forage crop in arid and semiarid regions worldwide. A symbolic crop for indigenous Austronesian peoples, foxtail millet has been cultivated in Taiwan for more than 5,000 years, and landraces reflect diversifying selection for various food applications. A total of 124 accessions collected within Taiwan were assessed for Wx genotypes. Four identified Wx alleles, I, III, IV, and IX were caused by insertion of various transposable elements (TEs) and resulted in endosperm with non-waxy, low amylose content (AC), and waxy, respectively. A total of 16.9%, 4.0%, 49.2%, and 29.8% of accessions were classified as type I, III, IV, and IX, respectively; approximately half of the accessions belonged to the waxy type, indicating that glutinous grains were favored for making traditional food and wine. The TE insertion affected splicing efficiency rather than accuracy, leading to significantly reduced expression of wx in types III, IV, and IX, although their transcripts were the same as wild-type, type I. Consequently, the granule-bound starch synthase I (GBSSI) contents of the three mutated genotypes were relatively low, leading to waxy or low AC endosperm, and the Wx genotypes could explain 78% of variance in AC. The geographic distribution of Wx genotypes are associated with culinary preferences and migration routes of Taiwanese indigenous peoples-in particular, the genotype of landraces collected from Orchid Island was distinct from those from Taiwan Island. This information on the major gene regulating starch biosynthesis in foxtail millet endosperm can be applied to breeding programs for grain quality, and contributes to knowledge of Austronesian cultures.
Collapse
Affiliation(s)
- Shu-meng Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-ru Chen
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Song-yu Yin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Qing-xiong Ba
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yuan-ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Warren H. J. Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yann-rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Hu H, Mauro-Herrera M, Doust AN. Domestication and Improvement in the Model C4 Grass, Setaria. FRONTIERS IN PLANT SCIENCE 2018; 9:719. [PMID: 29896214 PMCID: PMC5986938 DOI: 10.3389/fpls.2018.00719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.
Collapse
Affiliation(s)
| | | | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
15
|
Ni X, Xia Q, Zhang H, Cheng S, Li H, Fan G, Guo T, Huang P, Xiang H, Chen Q, Li N, Zou H, Cai X, Lei X, Wang X, Zhou C, Zhao Z, Zhang G, Du G, Cai W, Quan Z. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience 2017; 6:1-8. [PMID: 28369461 PMCID: PMC5466707 DOI: 10.1093/gigascience/giw005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/24/2016] [Accepted: 11/13/2016] [Indexed: 11/16/2022] Open
Abstract
Foxtail millet (Setaria italica) provides food and fodder in semi-arid regions and infertile land. Resequencing of 184 foxtail millet recombinant inbred lines (RILs) was carried out to aid essential research on foxtail millet improvement. A total 483 414 single nucleotide polymorphisms were determined. Bin maps were constructed based on the RILs' recombination data. Based on the high-density bin map, we updated Zhanggu reference with 416 Mb after adding 16 Mb unanchored scaffolds and Yugu reference with some assembly error correction and 3158 gaps filled. Quantitative trait loci (QTL) mapping of nine agronomic traits was done based on this RIL population, five of which were controlled by a single gene. Meanwhile, two QTLs were found for plant height, and a candidate gene showed 89% identity to the known rice gibberellin-synthesis gene sd1. Three QTLs were found for the trait of heading date. The whole genome resequencing and QTL mapping provided important tools for foxtail millet research and breeding. Resequencing of the RILs could also provide an effective way for high-quality genome assembly and gene identification.
Collapse
Affiliation(s)
- Xuemei Ni
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiuju Xia
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Houbao Zhang
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Shu Cheng
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hui Li
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou 075000, China
| | - Tao Guo
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ping Huang
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qingchun Chen
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ning Li
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongfeng Zou
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI Millet Co., Ltd, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xuemei Cai
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xuejing Lei
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoming Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou 075000, China
| | - Chengshu Zhou
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Lab of Genomics,Chinese Ministry of Agriculture, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Province Key Laboratory of Crop Germplasm Research and Application, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Molecular Design Breeding, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou 075000, China
| | - Gengyun Zhang
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Lab of Genomics,Chinese Ministry of Agriculture, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Province Key Laboratory of Crop Germplasm Research and Application, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Molecular Design Breeding, BGI-Shenzhen, Shenzhen 518083, China
| | - Guohua Du
- BGI Millet Co., Ltd, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Cai
- BGI Millet Co., Ltd, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiwu Quan
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Lab of Genomics,Chinese Ministry of Agriculture, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Province Key Laboratory of Crop Germplasm Research and Application, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Molecular Design Breeding, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
16
|
Roy NS, Kim NS. Genetic diversity analysis of maize lines using AFLP and TE-based molecular marker systems. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0461-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Borrayo E, Machida-Hirano R, Takeya M, Kawase M, Watanabe K. Principal components analysis--K-means transposon element based foxtail millet core collection selection method. BMC Genet 2016; 17:42. [PMID: 26880119 PMCID: PMC4754896 DOI: 10.1186/s12863-016-0343-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022] Open
Abstract
Background Core collections are important tools in genetic resources research and administration. At present, most core collection selection criteria are based on one of the following item characteristics: passport data, genetic markers, or morphological traits, which may lead to inadequate representations of variability in the complete collection. The development of a comprehensive methodology that includes as much element data as possible has been explored poorly. Using a collection of (Setaria italica sbsp. italica (L.) P. Beauv.) as a model, we developed a method for core collection construction based on genotype data and numerical representations of agromorphological traits, thereby improving the selection process. Results Principal component analysis allows the selection of the most informative discriminators among the various elements evaluated, regardless of whether they are genetic or morphological, thereby providing an adequate criterion for further K-mean clustering. Overall, the core collections of S. italica constructed using only genotype data demonstrated overall better validation scores than other core collections that we generated. However, core collection based on both genotype and agromorphological characteristics represented the overall diversity adequately. Conclusions The inclusion of both genotype and agromorphological characteristics as a comprehensive dataset in this methodology ensures that agricultural traits are considered in the core collection construction. This approach will be beneficial for genetic resources management and research activities for S. italica as well as other genetic resources. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0343-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernesto Borrayo
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan. .,Genetc Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannodai, Tsukuba City, 305-8602, Ibaraki, Japan.
| | - Ryoko Machida-Hirano
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| | - Masaru Takeya
- Genetc Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannodai, Tsukuba City, 305-8602, Ibaraki, Japan.
| | - Makoto Kawase
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| | - Kazuo Watanabe
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| |
Collapse
|
18
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015; 6:157. [PMID: 25852710 PMCID: PMC4371761 DOI: 10.3389/fpls.2015.00157] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
19
|
Multiple origins of the phenol reaction negative phenotype in foxtail millet, Setaria italica (L.) P. Beauv., were caused by independent loss-of-function mutations of the polyphenol oxidase (Si7PPO) gene during domestication. Mol Genet Genomics 2015; 290:1563-74. [PMID: 25740049 DOI: 10.1007/s00438-015-1022-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/25/2015] [Indexed: 01/26/2023]
Abstract
Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at frequencies of ca. 25-67 % and those with negative Phr were broadly found in Europe and Asia. The stop codon type was found in 285 accessions and was broadly distributed in Europe and Asia, whereas the TE-1 insertion type was found in 99 accessions from Europe and Asia but was not found in India. The 6-bp duplication type was found in only 8 accessions from Nansei Islands (Okinawa Prefecture) of Japan. We also analyzed Phr in the wild ancestor and concluded that the negative Phr type was likely to have originated after domestication of foxtail millet. It was also implied that negative Phr of foxtail millet arose by multiple independent loss of function of PPO gene through dispersal because of some advantages under some environmental conditions and human selection as in rice and barley.
Collapse
|
20
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25852710 DOI: 10.3389/fpl.2015.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
- Travis L Goron
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
21
|
Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. PLANT CELL REPORTS 2014; 33:881-93. [PMID: 24413764 DOI: 10.1007/s00299-014-1564-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/31/2013] [Indexed: 05/20/2023]
Abstract
Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R (2) = 18 %) with nine agronomic traits in foxtail millet. Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R (2) = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | | | | | | | | |
Collapse
|
22
|
Layton DJ, Kellogg EA. Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis (Poaceae: Paniceae) and its close relatives. AMERICAN JOURNAL OF BOTANY 2014; 101:539-57. [PMID: 24634437 DOI: 10.3732/ajb.1300428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PREMISE OF THE STUDY Species limits of the emerging model organism Setaria viridis (tribe Paniceae, subtribe Cenchrinae) are not well defined. It is thought to be related to S. adhaerens, S. faberi, S. verticillata, and S. verticilliformis and in North America occurs with the morphologically similar S. pumila. An integrated approach was taken to evaluate its variation and relationships with the other taxa. METHODS Statistical morphology, flow cytometry, molecular phylogenetics, and growth experiments were employed to examine the group's physical variation, polyploidy, evolutionary relationships, and drought ecology, respectively. KEY RESULTS SETARIA VIRIDIS contributed one genome to the tetraploids S. faberi, S. verticillata, and S. verticilliformis; the other genome of the latter two was contributed by S. adhaerens. Setaria pumila is unrelated. Morphologically, S. viridis is most similar to S. faberi, but all tested accessions of S. viridis were diploid, whereas those of S. faberi were all tetraploid. Principal component analysis of 70 morphological characters consistently separated S. viridis from S. faberi, largely by spikelet characters. The diagnostic morphological characters are not affected by watering. Setaria faberi is far more sensitive to drought, in terms of mortality and morphological stunting, than S. viridis or S. pumila. CONCLUSIONS SETARIA VIRIDIS is a diploid species and has contributed to several polyploid derivatives. The most morphologically similar of the polyploids is S. faberi, which differs in spikelet features, phylogenetics, genome size, and ecological response to drought. Researchers using field-collected S. viridis as a model organism will benefit from the clear delimitation provided in this study.
Collapse
Affiliation(s)
- Daniel J Layton
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
23
|
Jia G, Shi S, Wang C, Niu Z, Chai Y, Zhi H, Diao X. Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3645-56. [PMID: 23956411 PMCID: PMC3745726 DOI: 10.1093/jxb/ert198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Green foxtail (Setaria viridis) is a new model plant for the genomic investigation of C4 photosynthesis biology. As the ancestor of foxtail millet (Setaria italica), an ancient cereal of great importance in arid regions of the world, green foxtail is crucial for the study of domestication and evolution of this ancient crop. In the present study, 288 green foxtail accessions, which were collected from all geographical regions of China, were analysed using 77 simple sequence repeats (SSRs) that cover the whole genome. A high degree of molecular diversity was detected in these accessions, with an average of 33.5 alleles per locus. Two clusters, which were inconsistent with the distribution of eco-geographical regions in China, were inferred from STRUCTURE, Neighbor-Joining, and principal component analysis, indicating a partially mixed distribution of Chinese green foxtails. The higher subpopulation diversity was from accessions mainly collected from North China. A low level of linkage disequilibrium was observed in the green foxtail genome. Furthermore, a combined analysis of green foxtail and foxtail millet landraces was conducted, and the origin and domestication of foxtail millet was inferred in North China.
Collapse
Affiliation(s)
- Guanqing Jia
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shenkui Shi
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Chunfang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhengang Niu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yang Chai
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hui Zhi
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianmin Diao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, the Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
24
|
Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M. Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 2013; 20:197-207. [PMID: 23382459 PMCID: PMC3628449 DOI: 10.1093/dnares/dst002] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The availability of well-validated informative co-dominant microsatellite markers and saturated genetic linkage map has been limited in foxtail millet (Setaria italica L.). In view of this, we conducted a genome-wide analysis and identified 28 342 microsatellite repeat-motifs spanning 405.3 Mb of foxtail millet genome. The trinucleotide repeats (∼48%) was prevalent when compared with dinucleotide repeats (∼46%). Of the 28 342 microsatellites, 21 294 (∼75%) primer pairs were successfully designed, and a total of 15 573 markers were physically mapped on 9 chromosomes of foxtail millet. About 159 markers were validated successfully in 8 accessions of Setaria sp. with ∼67% polymorphic potential. The high percentage (89.3%) of cross-genera transferability across millet and non-millet species with higher transferability percentage in bioenergy grasses (∼79%, Switchgrass and ∼93%, Pearl millet) signifies their importance in studying the bioenergy grasses. In silico comparative mapping of 15 573 foxtail millet microsatellite markers against the mapping data of sorghum (16.9%), maize (14.5%) and rice (6.4%) indicated syntenic relationships among the chromosomes of foxtail millet and target species. The results, thus, demonstrate the immense applicability of developed microsatellite markers in germplasm characterization, phylogenetics, construction of genetic linkage map for gene/quantitative trait loci discovery, comparative mapping in foxtail millet, including other millets and bioenergy grass species.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research NIPGR, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3-GENES GENOMES GENETICS 2012; 2:769-77. [PMID: 22870400 PMCID: PMC3385983 DOI: 10.1534/g3.112.002907] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/03/2012] [Indexed: 01/07/2023]
Abstract
As an ancient cereal of great importance for dryland agriculture even today, foxtail millet (Setaria italica) is fast becoming a new plant genomic model crop. A genotypic analysis of 250 foxtail millet landraces, which represent 1% of foxtail millet germplasm kept in the Chinese National Gene Bank (CNGB), was conducted with 77 SSRs covering the foxtail millet genome. A high degree of molecular diversity among the landraces was found, with an average of 20.9 alleles per locus detected. STRUCTURE, neighbor-jointing, and principal components analyses classify the accessions into three clusters (topmost hierarchy) and, ultimately, four conservative subgroups (substructuring within the topmost clusters) in total, which are in good accordance with eco-geographical distribution in China. The highest subpopulation diversity was identified in the accessions of Pop3 from the middle regions of the Yellow River, followed by accessions in Pop1 from the downstream regions of the Yellow River, suggesting that foxtail millet was domesticated in the Yellow River drainage area first and then spread to other parts of the country. Linkage disequilibrium (LD) decay of less than 20 cM of genetic distance in the foxtail millet landrace genome was observed, which suggests that it could be possible to achieve resolution down to the 20 cM level for association mapping.
Collapse
|
26
|
Reference genome sequence of the model plant Setaria. Nat Biotechnol 2012; 30:555-61. [PMID: 22580951 DOI: 10.1038/nbt.2196] [Citation(s) in RCA: 535] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/29/2012] [Indexed: 11/08/2022]
|
27
|
Lin HS, Chiang CY, Chang SB, Kuoh CS. Development of Simple Sequence Repeats (SSR) markers in Setaria italica (Poaceae) and cross-amplification in related species. Int J Mol Sci 2011; 12:7835-45. [PMID: 22174636 PMCID: PMC3233442 DOI: 10.3390/ijms12117835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 11/16/2022] Open
Abstract
Foxtail millet is one of the world’s oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (Na), the average heterozygosities observed (Ho) and expected (He) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae.
Collapse
Affiliation(s)
- Heng-Sheng Lin
- Department of Life Sciences, Institute of Biodiversity, National Cheng Kung University, Tainan 70101, Taiwan; E-Mails: (H.-S.L); (C.-Y.C); (C.-S.K.)
| | | | | | | |
Collapse
|