1
|
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 2022; 54:1248-1258. [PMID: 35851189 PMCID: PMC9355876 DOI: 10.1038/s41588-022-01127-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.
Collapse
Affiliation(s)
- Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Honghai Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Laichun Guo
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Chunlong Wang
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Yubo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kaiquan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Dong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomeng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghong Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Liming Wei
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Changzhong Ren
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- China Oat and Buckwheat Research Center, Baicheng, China.
| |
Collapse
|
2
|
Fominaya A, Loarce Y, González JM, Ferrer E. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One 2021; 16:e0257100. [PMID: 34653181 PMCID: PMC8519437 DOI: 10.1371/journal.pone.0257100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic observations, phylogenetic studies and genome analysis using high-density genetic markers have suggested a tetraploid Avena species carrying the C and D genomes (formerly C and A) to be the donor of all hexaploid oats (AACCDD). However, controversy surrounds which of the three extant CCDD tetraploid species—A. insularis, A. magna and A. murphyi—is most closely related to hexaploid oats. The present work describes a comparative karyotype analysis of these three CCDD tetraploid species and two hexaploid species, A. sativa and A. byzantina. This involved the use of FISH with six simple sequence repeats (SSRs) with the motifs CT, AAC, AAG, ACG, ATC and ACT, two repeated ribosomal sequences, and C genome-specific repetitive DNA. The hybridization pattern of A. insularis with oligonucleotide (AC)10 was also determined and compared with those previously published for A. sativa and A. byzantina. Significant differences in the 5S sites and SSR hybridization patterns of A. murphyi compared to the other CCDD species rule out its being directly involved in the origin of the hexaploids. In contrast, the repetitive and SSR hybridization patterns shown by the D genome chromosomes, and by most of the C genome chromosomes of A. magna and A. insularis, can be equated with the corresponding chromosomes of the hexaploids. Several chromosome hybridization signals seen for A. insularis, but not for A. magna, were shared with the hexaploid oats species, especially with A. byzantina. These diagnostic signals add weight to the idea that the extant A. insularis, or a direct ancestor of it, is the most closely related progenitor of hexaploid oats. The similarity of the chromosome hybridization patterns of the hexaploids and CCDD tetraploids was taken as being indicative of homology. A common chromosome nomenclature for CCDD species based on that of the hexaploid species is proposed.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M. González
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
4
|
Tomaszewska P, Kosina R. Cytogenetic events in the endosperm of amphiploid Avena magna × A. longiglumis. JOURNAL OF PLANT RESEARCH 2021; 134:1047-1060. [PMID: 34057611 PMCID: PMC8364899 DOI: 10.1007/s10265-021-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 05/13/2023]
Abstract
This study analysed cytogenetic events occurring in the syncytial endosperm of the Avena magna H. C. Murphy & Terrell × Avena longiglumis Durieu amphiploid, which is a product of two wild species having different genomes. Selection through the elimination of chromosomes and their fragments, including those translocated, decreased the level of ploidy in the endosperm below the expected 3n, leading to the modal number close to 2n. During intergenomic translocations, fragments of the heterochromatin-rich C-genome were transferred to the D and Al genomes. Terminal and non-reciprocal exchanges dominated, whereas other types of translocations, including microexchanges, were less common. Using two probes and by counterstaining with DAPI, the A. longiglumis and the rare exchanges between the D and Al genomes were detected by GISH. The large discontinuity in the probe labelling in the C chromosomes demonstrated inequality in the distribution of repetitive sequences along the chromosome and probable intragenomic rearrangements. In the nucleus, the spatial arrangement of genomes was non-random and showed a sectorial-concentric pattern, which can vary during the cell cycle, especially in the less stable tissue like the hybrid endosperm.
Collapse
Affiliation(s)
| | - Romuald Kosina
- Institute of Environmental Biology, University of Wrocław, Przybyszewskiego 63, 51-148, Wroclaw, Poland.
| |
Collapse
|
5
|
Jiang W, Jiang C, Yuan W, Zhang M, Fang Z, Li Y, Li G, Jia J, Yang Z. A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC PLANT BIOLOGY 2021; 21:213. [PMID: 33980176 PMCID: PMC8114715 DOI: 10.1186/s12870-021-02999-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The identification of chromosomes among Avena species have been studied by C-banding and in situ hybridization. However, the complicated results from several cytogenetic nomenclatures for identifying oat chromosomes are often contradictory. A universal karyotyping nomenclature system for precise chromosome identification and comparative evolutionary studies would be essential for genus Avena based on the recently released genome sequences of hexaploid and diploid Avena species. RESULTS Tandem repetitive sequences were predicted and physically located on chromosomal regions of the released Avena sativa OT3098 genome assembly v1. Eight new oligonucleotide (oligo) probes for sequential fluorescence in situ hybridization (FISH) were designed and then applied for chromosome karyotyping on mitotic metaphase spreads of A. brevis, A. nuda, A. wiestii, A. ventricosa, A. fatua, and A. sativa species. We established a high-resolution standard karyotype of A. sativa based on the distinct FISH signals of multiple oligo probes. FISH painting with bulked oligos, based on wheat-barley collinear regions, was used to validate the linkage group assignment for individual A. sativa chromosomes. We integrated our new Oligo-FISH based karyotype system with earlier karyotype nomenclatures through sequential C-banding and FISH methods, then subsequently determined the precise breakage points of some chromosome translocations in A. sativa. CONCLUSIONS This new universal chromosome identification system will be a powerful tool for describing the genetic diversity, chromosomal rearrangements and evolutionary relationships among Avena species by comparative cytogenetic and genomic approaches.
Collapse
Affiliation(s)
- Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Meijun Zhang
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China
| | - Zijie Fang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Yang Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Juqing Jia
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.
| |
Collapse
|
6
|
Luo X, Tinker NA, Zhou Y, Wight CP, Liu J, Wan W, Chen L, Peng Y. Genomic relationships among sixteen species of Avena based on (ACT)6 trinucleotide repeat FISH. Genome 2018; 61:63-70. [DOI: 10.1139/gen-2017-0132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Knowledge of the locations of repeat elements could be very important in the assembly of genome sequences and their assignment to physical chromosomes. Genomic and species relationships among 16 species were investigated using fluorescence in situ hybridization (FISH) with the Am1 and (ACT)6 probes. The Am1 oligonucleotide probe was particularly enriched in the C genomes, whereas the (ACT)6 trinucleotide repeat probe showed a diverse distribution of hybridization patterns in the A, AB, C, AC, and ACD genomes but might not be present in the B and D genomes. The hybridization pattern of Avena sativa was very similar to that of A. insularis, indicating that this species most likely originated from A. insularis as a tetraploid ancestor. Although the two FISH probes failed to identify relationships of more species, this proof-of-concept approach opens the way to the use of FISH probes in assigning other signature elements from genomic sequence to physical chromosomes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Nick A. Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Charlene P. Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Wenlin Wan
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Liang Chen
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| |
Collapse
|
7
|
45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus. PLoS One 2017; 12:e0176170. [PMID: 28448637 PMCID: PMC5407837 DOI: 10.1371/journal.pone.0176170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
The genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid (AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic spacer (IGS) variability in distinct species representative of Avena genome diversity-A. strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi (AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5' external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due to distinct 5'-ETS sequence types resulting from major differences in the number and organization of repeated motifs. Although species with A genome revealed a 5'-ETS organization (A-organization) similar to the one previously described in A. sativa, a distinct organization was unraveled in C genome diploid species (C-organization). Interestingly, such new organization presents a higher similarity with other Poaceae species than A-genome sequences, supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally, polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming the preferential elimination of C-genome sequences in Avena polyploid species. Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied according to ploidy and genomic constitution supporting the use of ribosomal genes to highlight Avena species evolutive pathways.
Collapse
|
8
|
Fominaya A, Loarce Y, Montes A, Ferrer E. Chromosomal distribution patterns of the (AC) 10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena. Genome 2016; 60:216-227. [PMID: 28156137 DOI: 10.1139/gen-2016-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Alexander Montes
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Tomás D, Rodrigues J, Varela A, Veloso MM, Viegas W, Silva M. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal. Int J Mol Sci 2016; 17:E203. [PMID: 26861283 PMCID: PMC4783937 DOI: 10.3390/ijms17020203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/15/2023] Open
Abstract
Genomic diversity of Portuguese accessions of Avena species--diploid A. strigosa and hexaploids A. sativa and A. sterilis--was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species--rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies--IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)--were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs.
Collapse
Affiliation(s)
- Diana Tomás
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Joana Rodrigues
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Ana Varela
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Maria Manuela Veloso
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2784-505 Oeiras, Portugal.
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Manuela Silva
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
10
|
Yan HH, Baum BR, Zhou PP, Zhao J, Wei YM, Ren CZ, Xiong FQ, Liu G, Zhong L, Zhao G, Peng YY. Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psbA-trnH and single-copy nuclear gene Acc1. Genome 2015; 57:267-77. [PMID: 25188288 DOI: 10.1139/gen-2014-0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two uncorrelated nucleotide sequences, chloroplast intergenic spacer psbA-trnH and acetyl CoA carboxylase gene (Acc1), were used to perform phylogenetic analyses in 75 accessions of the genus Avena, representing 13 diploids, seven tetraploid, and four hexaploids by maximum parsimony and Bayesian inference. Phylogenic analyses based on the chloroplast intergenic spacer psbA-trnH confirmed that the A genome diploid might be the maternal donor of species of the genus Avena. Two haplotypes of the Acc1 gene region were obtained from the AB genome tetraploids, indicating an allopolyploid origin for the tetraploid species. Among the AB genome species, both gene trees revealed differences between Avena agadiriana and the other species, suggesting that an AS genome diploid might be the A genome donor and the other genome diploid donor might be the Ac genome diploid Avena canariensis or the Ad genome diploid Avena damascena. Three haplotypes of the Acc1 gene have been detected among the ACD genome hexaploid species. The haplotype that seems to represent the D genome clustered with the tetraploid species Avena murphyi and Avena maroccana, which supported the CD genomic designation instead of AC for A. murphyi and A. maroccana.
Collapse
Affiliation(s)
- Hong-Hai Yan
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang District, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Luo X, Zhang H, Kang H, Fan X, Wang Y, Sha L, Zhou Y. Exploring the origin of the D genome of oat by fluorescence in situ hybridization. Genome 2014; 57:469-72. [DOI: 10.1139/gen-2014-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.
Collapse
Affiliation(s)
- Xiaomei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- College of Forestry, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
12
|
Linares C, González J, Ferrer E, Fominaya A. The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome 2012; 39:535-42. [PMID: 18469914 DOI: 10.1139/g96-068] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.
Collapse
|
13
|
Sanz MJ, Loarce Y, Ferrer E, Fominaya A. Use of tyramide-fluorescence in situ hybridization and chromosome microdissection for ascertaining homology relationships and chromosome linkage group associations in oats. Cytogenet Genome Res 2012; 136:145-56. [PMID: 22285909 DOI: 10.1159/000335641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2011] [Indexed: 01/11/2023] Open
Abstract
The physical mapping of single locus sequences by tyramide-fluorescence in situ hybridization (Tyr-FISH) and the analysis of sequences obtained from microdissected chromosomes were assayed as potential tools for (1) determining homology and homoeology among chromosome regions of Avena species, and (2) establishing associations between linkage groups and specific chromosomes. Low copy number probes, derived from resistance gene analogues (RGAs) and 2.8-4.5 kb long, successfully produced hybridization signals on specific chromosomes. Four sets of homoeologous chromosome regions were identified in the hexaploids using 3 probes that produced 4 single locus markers in A. strigosa and 2 in A. eriantha. Laser capture microdissection of metaphase I cells of A. sativa monosomic lines allowed the isolation of critical univalents. Sequences derived from 2 RGAs were successfully amplified in DNA extracted from univalents. In one instance, it was possible to map a nucleotide polymorphism specific for 1 chromosome. An association was established between this chromosome and its linkage groups in 2 hexaploid genetic maps. The results indicate that Tyr-FISH is useful in the characterization of homoeologous chromosome segments in hexaploids, whereas chromosome microdissection, as employed in this work, needs to be improved before it can routinely be used with meiotic chromosomes.
Collapse
Affiliation(s)
- M J Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | |
Collapse
|
14
|
Badaeva ED, Shelukhina OY, Dedkova OS, Loskutov IG, Pukhalskyi VA. Comparative cytogenetic analysis of hexaploid Avena L. species. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411060068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sanz MJ, Jellen EN, Loarce Y, Irigoyen ML, Ferrer E, Fominaya A. A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1541-52. [PMID: 20658121 DOI: 10.1007/s00122-010-1409-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/08/2010] [Indexed: 05/21/2023]
Abstract
Fluorescent in situ hybridization (FISH) with multiple probes was used to analyze mitotic and meiotic chromosome spreads of Avena sativa cv 'Sun II' monosomic lines, and of A. byzantina cv 'Kanota' monosomic lines from spontaneous haploids. The probes used were A. strigosa pAs120a (a repetitive sequence abundant in A-genome chromatin), A. murphyi pAm1 (a repetitive sequence abundant in C-genome chromatin), A. strigosa pITS (internal transcribed spacer of rDNA) and the wheat rDNA probes pTa71 (nucleolus organizer region or NOR) and pTa794 (5S). Simultaneous and sequential FISH employing pairs of these probes allowed the identification and genome assignation of all chromosomes. FISH mapping using mitotic and meiotic metaphases facilitated the genomic and chromosomal identification of the monosome in each line. Of the 17 'Sun II' lines analyzed, 13 distinct monosomic lines were found, corresponding to four monosomes of the A-genome, five of the C-genome and four of the D-genome. In addition, 12 distinct monosomic lines were detected among the 20 'Kanota' lines examined, corresponding to six monosomes of the A-genome, three of the C-genome and three of the D-genome. The results show that 19 chromosomes out of 21 of the complement are represented by monosomes between the two genetic backgrounds. The identity of the remaining chromosomes can be deduced either from one intergenomic translocation detected on both 'Sun II' and 'Kanota' lines, or from the single reciprocal, intergenomic translocation detected among the 'Sun II' lines. These results permit a new system to be proposed for numbering the 21 chromosome pairs of the hexaploid oat complement. Accordingly, the A-genome contains chromosomes 8A, 11A, 13A, 15A, 16A, 17A and 19A; the C-genome contains chromosomes 1C, 2C, 3C, 4C, 5C, 6C and 7C; and the D-genome consists of chromosomes 9D, 10D, 12D, 14D, 18D, 20D and 21D. Moreover, the FISH patterns of 16 chromosomes in 'Sun II' and 15 in 'Kanota' suggest that these chromosomes could be involved in intergenomic translocations. By comparing the identities of individually translocated chromosomes in the two hexaploid species with those of other hexaploids, we detected different types of intergenomic translocations.
Collapse
Affiliation(s)
- M J Sanz
- Department of Cell Biology and Genetics, University of Alcalá, 28871, Alcalá de Henares (Madrid), Spain
| | | | | | | | | | | |
Collapse
|
16
|
Peng YY, Baum BR, Ren CZ, Jiang QT, Chen GY, Zheng YL, Wei YM. The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas 2010; 147:183-204. [PMID: 21039456 DOI: 10.1111/j.1601-5223.2010.02172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ribosomal ITS sequences are commonly used for phylogenetic reconstruction because they are included in rDNA repeats, and these repeats often undergo rapid concerted evolution within and between arrays. Therefore, the rDNA ITS copies appear to be virtually identical and can sometimes be treated as a single gene. In this paper we examined ITS polymorphism within and among 13 diploid (A and C genomes), seven tetraploid (AB, AC and CC genomes) and four hexaploid (ACD genome) to infer the extent and direction of concerted evolution, and to reveal the phylogenetic and genome relationship among species of Avena. A total of 170 clones of the ITS1-5.8S-ITS2 fragment were sequenced to carry out haplotype and phylogenetic analysis. In addition, 111 Avena ITS sequences retrieved from GenBank were combined with 170 clones to construct a phylogeny and a network. We demonstrate the major divergence between the A and C genomes whereas the distinction among the A and B/D genomes was generally not possible. High affinity among the A(d) genome species A. damascena and the ACD genome species A. fatua was found, whereas the rest of the ACD genome hexaploids and the AACC tetraploids were highly affiliated with the A(l) genome diploid A. longiglumis. One of the AACC species A. murphyi showed the closest relationship with most of the hexaploid species. Both C(v) and C(p) genome species have been proposed as paternal donors of the C-genome carrying polyploids. Incomplete concerted evolution is responsible for the observed differences among different clones of a single Avena individual. The elimination of C-genome rRNA sequences and the resulting evolutionary inference of hexaploid species are discussed.
Collapse
Affiliation(s)
- Yuan-Ying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Peng YY, Wei YM, Baum BR, Yan ZH, Lan XJ, Dai SF, Zheng YL. Phylogenetic inferences in Avena based on analysis of FL intron2 sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:985-1000. [PMID: 20514475 DOI: 10.1007/s00122-010-1367-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/15/2010] [Indexed: 05/23/2023]
Abstract
The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.
Collapse
Affiliation(s)
- Yuan-Ying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Badaeva ED, Shelukhina OY, Diederichsen A, Loskutov IG, Pukhalskiy VA. Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species. Genome 2010; 53:125-37. [DOI: 10.1139/g09-089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chromosome set of Avena macrostachya Balansa ex Coss. et Durieu was analyzed using C-banding and fluorescence in situ hybridization with 5S and 18S-5.8S-26S rRNA gene probes, and the results were compared with the C-genome diploid Avena L. species. The location of major nucleolar organizer regions and 5S rDNA sites on different chromosomes confirmed the affiliation of A. macrostachya with the C-genome group. However, the symmetric karyotype, the absence of “diffuse heterochromatin”, and the location of large C-band complexes in proximal chromosome regions pointed to an isolated position of A. macrostachya from other Avena species. Based on the distribution of rDNA loci on the C-genome chromosomes of diploid and polyploid Avena species, we propose a model of the chromosome alterations that occurred during the evolution of oat species.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 119991, Russia
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- N.I. Vavilov Institute of Plant Industry, Russian Academy of Agricultural Sciences, 44 Bolshaya Morskaya Street, St. Petersburg, Russia
| | - Olga Yu. Shelukhina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 119991, Russia
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- N.I. Vavilov Institute of Plant Industry, Russian Academy of Agricultural Sciences, 44 Bolshaya Morskaya Street, St. Petersburg, Russia
| | - Axel Diederichsen
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 119991, Russia
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- N.I. Vavilov Institute of Plant Industry, Russian Academy of Agricultural Sciences, 44 Bolshaya Morskaya Street, St. Petersburg, Russia
| | - Igor G. Loskutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 119991, Russia
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- N.I. Vavilov Institute of Plant Industry, Russian Academy of Agricultural Sciences, 44 Bolshaya Morskaya Street, St. Petersburg, Russia
| | - Vitaly A. Pukhalskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 119991, Russia
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- N.I. Vavilov Institute of Plant Industry, Russian Academy of Agricultural Sciences, 44 Bolshaya Morskaya Street, St. Petersburg, Russia
| |
Collapse
|
19
|
Shelukhina OY, Badaeva ED, Brezhneva TA, Loskutov IG, Pukhalsky VA. Comparative analysis of diploid species of Avena L. Using cytogenetic and biochemical markers: Avena pilosa M. B. and A. clauda Dur. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408090111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Nikoloudakis N, Katsiotis A. The origin of the C-genome and cytoplasm of Avena polyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:273-81. [PMID: 18463841 DOI: 10.1007/s00122-008-0772-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 04/09/2008] [Indexed: 05/23/2023]
Abstract
The contribution of C-genome diploid species to the evolution of polyploid oats was studied using C-genome ITS-specific primers. SCAR analysis among Avena accessions confirmed the presence of C-genome ITS1-5.8S-ITS2 sequences in the genome of AACC and AACCDD polyploids. In situ hybridization and screening of more than a thousand rRNA clones in Avena polyploid species containing the C-genome revealed substantial C-genome rRNA sequence elimination. C-genome clones sequenced and Maximum Likelihood Parsimony analysis revealed close proximity to Avena ventricosa ITS1-5.8S-ITS2 sequences, providing strong evidence of the latter's active role in the evolution of tetraploid and hexaploid oats. In addition, cloning and sequencing of the chloroplastic trnL intron among the most representative Avena species verified the maternal origin of A-genome for the AACC interspecific hybrid formation, which was the genetic bridge for the establishment of cultivated hexaploid oats.
Collapse
Affiliation(s)
- N Nikoloudakis
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | | |
Collapse
|
21
|
Peng YY, Wei YM, Baum BR, Zheng YL. Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae). Genome 2008; 51:137-54. [PMID: 18356948 DOI: 10.1139/g07-111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular diversity of the rDNA sequences (5S rDNA units) in 71 accessions from 26 taxa of Avena was evaluated. The analyses, based on 553 sequenced clones, indicated that there were 6 unit classes, named according to the haplomes (genomes) they putatively represent, namely the long A1, long B1, long M1, short C1, short D1, and short M1 unit classes. The long and short M1 unit classes were found in the tetraploid A. macrostachya, the only perennial species. The long M1 unit class was closely related to the short C1 unit class, while the short M1 unit class was closely related to the long A1 and long B1 unit classes. However, the short D1 unit class was more divergent from the other unit classes. There was only one unit class per haplome in Avena, whereas haplomes in the Triticeae often have two. Most of the sequences captured belonged to the long A1 unit class. Sequences identified as the long B1 unit class were found in the tetraploids A. abyssinica and A. vaviloviana and the diploids A. atlantica and A. longiglumis. The short C1 unit class was found in the diploid species carrying the C genome, i.e., A. clauda, A. eriantha, and A. ventricosa, and also in the diploid A. longiglumis, the tetraploids A. insularis and A. maroccana, and all the hexaploid species. The short D1 unit class was found in all the hexaploid species and two clones of A. clauda. It is noteworthy that in previous studies the B genome was found only in tetraploid species and the D genome only in hexaploid species. Unexpectedly, we found that various diploid Avena species contained the B1 and D1 units. The long B1 unit class was found in 3 accessions of the diploid A. atlantica (CN25849, CN25864, and CN25887) collected in Morocco and in 2 accessions of A. longiglumis (CIav9087 and CIav9089) collected in Algeria and Libya, respectively, whereas only 1 clone of A. clauda (CN21378) had the short D1 unit. Thus there might be a clue as to where to search for diploids carrying the B and D genomes. Avena longiglumis was found to be the most diverse species, possibly harboring the A, B, and C haplomes. The long M1 and short M1 are the unit classes typical of A. macrostachya. These results could explain the roles of A. clauda, A. longiglumis, and A. atlantica in the evolution of the genus Avena. Furthermore, one clone of the tetraploid A. murphyi was found to have sequences belonging to the short D1 unit class, which could indicate that A. murphyi might have been the progenitor of hexaploid oats and not, as postulated earlier, A. insularis. The evolution of Avena did not follow the molecular clock. The path inferred is that the C genome is more ancient than the A and B genomes and closer to the genome of A. macrostachya, the only existing perennial, which is presumed to be the most ancestral species in the genus.
Collapse
Affiliation(s)
- Yuan-Ying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Yaan 625014, Sichuan, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Nikoloudakis N, Skaracis G, Katsiotis A. Evolutionary insights inferred by molecular analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. sequences. Mol Phylogenet Evol 2008; 46:102-15. [DOI: 10.1016/j.ympev.2007.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
|
23
|
Shelukhina OY, Badaeva ED, Loskutov IG, Pukhal’sky VA. A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. RUSS J GENET+ 2007. [DOI: 10.1134/s102279540706004x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Jellen E, Michael Leggett J. Cytogenetic Manipulation in Oat Improvement. GENETIC RESOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT 2006. [DOI: 10.1201/9780203489260.ch7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Irigoyen ML, Ferrer E, Loarce Y. Cloning and characterization of resistance gene analogs from Avena species. Genome 2006; 49:54-63. [PMID: 16462901 DOI: 10.1139/g05-087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences analogous to plant resistance genes of the NBS–LRR class were cloned from the genomic DNA of 11 Avena species with different genomes and levels of ploidy. Three pairs of degenerate primers were used, based on conserved DNA sequence motifs belonging to the NBS domain, and 33 sequences were identified. These were subdivided into 7 classes depending on nucleotide sequence identity. Despite the high level of degeneracy, the primers behaved in a highly selective way; the majority of sequences from the different species obtained with every primer combin ation showed strong identity and were considered homologous. For most species, only one sequence of each class was identified in each genome, suggesting that duplicated sequences are fairly divergent. The strong identity among specific NBS sequences precludes any conclusions being made on the evolution of these species. The genomic organization of the RGA sequences was explored using those of A. strigosa as probes in Southern blots involving digested DNA from 15 Avena species. The hybridization patterns showed wide diversity both among sequences within a species and among species for each sequence. However, the dendrogram generated using the RFLPs showed relationships among species to be in good agreement with those previously established using other molecular markers.Key words: resistance gene analog (RGA), disease resistance genes, diversity, Avena, oats.
Collapse
Affiliation(s)
- M L Irigoyen
- Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
26
|
Sharma S, Raina SN. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005; 109:15-26. [PMID: 15753554 DOI: 10.1159/000082377] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/14/2004] [Indexed: 11/19/2022] Open
Abstract
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive".
Collapse
Affiliation(s)
- S Sharma
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi, India.
| | | |
Collapse
|
27
|
Irigoyen ML, Linares C, Ferrer E, Fominaya A. Fluorescence in situ hybridization mapping of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences. Genome 2002; 45:1230-7. [PMID: 12502269 DOI: 10.1139/g02-076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C-14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C-14D interchange was also monitored in these lines.
Collapse
Affiliation(s)
- M L Irigoyen
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, ES-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Ananiev EV, Vales MI, Phillips RL, Rines HW. Isolation of A/D and C genome specific dispersed and clustered repetitive DNA sequences from Avena sativa. Genome 2002; 45:431-41. [PMID: 11962640 DOI: 10.1139/g01-148] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.
Collapse
Affiliation(s)
- Evgueni V Ananiev
- Department of Agronomy and Plant Genetics and Plant Molecular Genetics Institute, University of Minnesota, St. Paul 55108-6026, USA
| | | | | | | |
Collapse
|
29
|
Hayasaki M, Morikawa T, Tarumoto I. Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization. Genes Genet Syst 2000; 75:167-71. [PMID: 10984842 DOI: 10.1266/ggs.75.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Wild and cultivated hexaploid oats share the same genomes (AACCDD) and display a considerable level of interspecific variation in both plant and chromosome morphology. The GISH was utilized to detect the interspecific genomic compositions in four hexaploid and two tetraploid oats using total genomic DNA of Avena eriantha (a C-genome diploid) as probe. Intergenomic translocations between A/D and C-genome chromosomes were frequently observed in hexaploid and tetraploid species. In the hexaploid, two pairs of A/D genome segments on C-genome chromosome (A/D-C) translocation and four to six pairs of C-genome segments on A/D genome chromosome (C-A/D) translocation were clearly identified whilst the number of A/D-C translocations was constant among species. In the tetraploid A. maroccana (AACC), a pair of A-C and four pairs of C-A translocations were observed. Moreover, the A/D translocation segments on chromosome 5C was detected only in A. byzantina and A. maroccana, whilst A/D-C translocations were observed on the 1C and 7C of A. sativa, A. fatua and A. sterilis. A. byzantina did however also carry the 1C rearrangement. This result shows that A. byzantina has retained a similar genomic constitution to the tetraploid ancestor of hexaploid oats, A. maroccana. Three pairs of A-C translocations were detected only in A. murphyi (AACC), and two pairs of those were the 1C and 7C as well as the three hexaploid species except A. byzantina.
Collapse
Affiliation(s)
- M Hayasaki
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Japan
| | | | | |
Collapse
|
30
|
Linares C, Serna A, Fominaya A. Chromosomal organization of a sequence related to LTR-like elements of Ty1-copia retrotransposons in Avena species. Genome 1999; 42:706-13. [PMID: 10464792 DOI: 10.1139/g99-007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 x 10(4) copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 x 10(4) copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.
Collapse
Affiliation(s)
- C Linares
- Department of Cell Biology and Genetics, University of Alcalá, Madrid, Spain
| | | | | |
Collapse
|
31
|
Yang Q, Hanson L, Bennett MD, Leitch IJ. Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 1999. [DOI: 10.1139/g98-154] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allohexaploid wild oat, Avena fatua L. (Poaceae; 2n = 6x = 42), is one of the world's worst weeds, yet unlike some of the other Avena hexaploids, its genomic structure has been relatively little researched. Consequently, in situ hybridisation was carried out on one accession of A. fatua using an 18S-25S ribosomal DNA (rDNA) sequence and genomic DNA fromA. strigosa (AA-genome diploid) and A. clauda (CC-genome diploid) as probes. Comparing these results with those for other hexaploids studied previously: (i) confirmed that the genomic composition of A. fatua was similar to the other hexaploid Avena taxa (i.e., AACCDD), (ii) identified major sites of rDNA on three pairs of A/D-genome chromosomes, in common with other Avena hexaploids, and (iii) revealed eight chromosome pairs carrying intergenomic translocations between the A/D- and C-genomes in the accession studied. Based on karyotype structure, the identity of some of these recombinant chromosomes was proposed, and this showed that some of these could be divided into two types, (i) those common to all hexaploid Avena species analysed (3 translocations) and (ii) one translocation in this A. fatua accession not previously observed in reports on other hexaploid Avena species. If this translocation is found to be unique to A. fatua, then this information, combined with more traditional morphological data, will add support to the view that A. fatua is genetically distinct from other hexaploid Avena species and thus should retain its full specific status.Key words: wild oats, Avena, genomic in situ hybridisation (GISH), intergenomic translocations, ribosomal DNA.
Collapse
|
32
|
Lee SH, Do GS, Seo BB. Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex. Chromosome Res 1999; 7:89-93. [PMID: 10328620 DOI: 10.1023/a:1009222411001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chromosomal localizations and distribution patterns of the 5S rRNA genes by means of fluorescence in-situ hybridization in diploid Allium species could help to classify species into chromosome types and aid in determining relationships among genomes. All eleven diploid species were classified into five types, A to E. Species of type A showed a pair of 5S rRNA signals on the short arm of chromosome 5 and two pairs of signals on both arms of chromosome 7. Species of types B and C showed one pair and two pairs of signals on the short arm of chromosome 7, respectively. Type D species showed two pairs of signals on the satellite region of the short arm and a pair of signals on the long arm of chromosome 7. Type E species showed three distinct 5S rRNA gene loci signals on the short arm of chromosome 7. Information on chromosomal localization of 5S rRNA gene loci and distribution patterns within chromosomes in diploid Allium species could help to infer the pathway of origin of the three kinds of alloploid species. Data indicate that A. wakegi is an allopolyploid with genomes of types B and C, and A. deltoide-fistulosum is an allotetraploid derived from a natural hybridization between different species within chromosome type A. Results indicate that A. senescens is an allopolyploid with type B chromosomes and an unidentified chromosomal type.
Collapse
Affiliation(s)
- S H Lee
- Department of Biology, Kyungpook National University, Taegu, Korea
| | | | | |
Collapse
|
33
|
Linares C, Ferrer E, Fominaya A. Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. Proc Natl Acad Sci U S A 1998; 95:12450-5. [PMID: 9770506 PMCID: PMC22851 DOI: 10.1073/pnas.95.21.12450] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A satellite DNA sequence, As120a, specific to the A-genome chromosomes in the hexaploid oat, Avena sativa L., was isolated by subcloning a fragment with internal tandem repeats from a plasmid, pAs120, that had been obtained from an Avena strigosa (As genome) genomic library. Southern and in situ hybridization showed that sequences with homology to sequences within pAs120 were dispersed throughout the genome of diploid (A and C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) Avena species. In contrast, sequences homologous to As120a were found in two A-genome species (A. strigosa and Avena longiglumis) and in the hexaploid A. sativa whereas this sequence was little amplified in the tetraploid Avena murphyi and was absent in the remaining A- and C-genome diploid species. In situ hybridization of pAs120a to hexaploid oat species revealed the distribution of elements of the As120a repeated family over both arms of 14 of 42 chromosomes of this species. By using double in situ hybridization with pAs120a and a C genome-specific probe, three sets of 14 chromosomes were revealed corresponding to the A, C, and D genomes of the hexaploid species. Simultaneous in situ hybridizations with pAs120a and ribosomal probes were used to assign the SAT chromosomes of hexaploid species to their correct genomes. This work reports a sequence able to distinguish between the closely related A and D genomes of hexaploid oats. This sequence offers new opportunities to analyze the relationships of Avena species and to explore the possible evolution of various polyploid oat species.
Collapse
Affiliation(s)
- C Linares
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, ES-28871 Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
34
|
Besse P, McIntyre CL. Isolation and characterisation of repeated DNA sequences from Erianthus spp. (Saccharinae: Andropogoneae). Genome 1998. [DOI: 10.1139/g98-034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four anonymous noncoding sequences were isolated from Erianthus arundinaceus. The four sequences were selected because they were specific to the genusErianthus section Ripidium, relative to Saccharum spp. These sequences, designated Eracsi 294, 228, 153, and 34, showed various degrees of repetitiveness and different patterns of distribution. Eracsi 34 and 153 were low- and medium-copy repeated sequences, respectively, and appeared to be present at discrete locations in the Erianthus genome. By contrast, Eracsi 294, also a low-copy sequence, appeared to be more dispersed in location, with some tandem arrays identified. Eracsi 228 was highly repeated and dispersed. The location of Eracsi 228 was more precisely determined by FISH and was found to be distributed along the length of, but not at the telomeres of, most chromosomes in two Erianthus species. The distribution of the four sequences was investigated in a sample of 65 Erianthus (representing 9 species) and 14 Saccharum (2 species) accessions. The usefulness of these sequences for phylogenetic and genome organisation studies in sugarcane and for assessing the genetic structure of Saccharum x Erianthus intergeneric hybrids is discussed.Key words: Erianthus, FISH, repetitive sequences, Saccharum, sugarcane.
Collapse
|
35
|
Polanco C, De La Vega MP. Intergenic ribosomal spacer variability in hexaploid oat cultivars and landraces. Heredity (Edinb) 1997. [DOI: 10.1038/hdy.1997.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|