1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024:S0960-9822(24)01238-7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
De-Kayne R, Perry BW, McGowan KL, Landers J, Arias-Rodriguez L, Greenway R, Rodríguez Peña CM, Tobler M, Kelley JL. Evolutionary Rate Shifts in Coding and Regulatory Regions Underpin Repeated Adaptation to Sulfidic Streams in Poeciliid Fishes. Genome Biol Evol 2024; 16:evae087. [PMID: 38788745 PMCID: PMC11126329 DOI: 10.1093/gbe/evae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jake Landers
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos M Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
| | - Michael Tobler
- Department of Biology, University of Missouri–St. Louis, St. Louis, MO 63131, USA
- Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, St. Louis, MO 63110, USA
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
3
|
Chen WL, Zhang M, Wang JG, Huang WJ, Wu Q, Zhu XP, Li N, Wu Q, Guo W, Chen J. Microbial mechanisms of C/N/S geochemical cycling during low-water-level sediment remediation in urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120962. [PMID: 38677229 DOI: 10.1016/j.jenvman.2024.120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Low-water-level regulation has been effectively implemented in the restoration of urban river sediments in Guangzhou City, China. Further investigation is needed to understand the microbial mechanisms involved in pollutant degradation in low-water-level environments. This study examined sediment samples from nine rivers, including low-water-level rivers (LW), tidal waterways (TW), and enclosed rivers (ER). Metagenomic high-throughput sequencing and the Diting pipeline were utilized to investigate the microbial mechanisms involved in sediment C/N/S geochemical cycling during low-water-level regulation. The results reveal that the degree of pollution in LW sediment is lower compared to TW and ER sediment. LW sediment exhibits a higher capacity for pollutant degradation and elimination of black, odorous substances due to its stronger microbial methane oxidation, nitrification, denitrification, anammox, and oxidation of sulfide, sulfite, and thiosulfate. Conversely, TW and ER sediment showcase greater microbial methanogenesis, anaerobic fermentation, and sulfide generation abilities, leading to the persistence of black, odorous substances. Factors such as grit and silt content, nitrate, and ammonia concentrations impacted microbial metabolic pathways. Low-water-level regulation improved the micro-environment for functional microbes, facilitating pollutant removal and preventing black odorous substance accumulation. These findings provide insights into the microbial mechanisms underlying low-water-level regulation technology for sediment restoration in urban rivers.
Collapse
Affiliation(s)
- Wen-Long Chen
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Min Zhang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Jian-Guo Wang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Wei-Jie Huang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Qiong Wu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Xiao-Ping Zhu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Ning Li
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Qian Wu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Wei Guo
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Jun Chen
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| |
Collapse
|
4
|
Barts N, Bhatt RH, Toner C, Meyer WK, Durrant JD, Kohl KD. Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110949. [PMID: 38341948 DOI: 10.1016/j.cbpb.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.
Collapse
Affiliation(s)
- Nick Barts
- Department of Biological and Clinical Sciences, University of Central Missouri, Warrensburg, MO, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Roshni H Bhatt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. https://twitter.com/RoshniBhatt3
| | - Chelsea Toner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA. https://twitter.com/sorrywm
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. https://twitter.com/KevinDKohl
| |
Collapse
|
5
|
Pacher K, Hernández-Román N, Juarez-Lopez A, Jiménez-Jiménez JE, Lukas J, Sevinchan Y, Krause J, Arias-Rodríguez L, Bierbach D. Thermal tolerance in an extremophile fish from Mexico is not affected by environmental hypoxia. Biol Open 2024; 13:bio060223. [PMID: 38314873 PMCID: PMC10868586 DOI: 10.1242/bio.060223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024] Open
Abstract
The thermal ecology of ectotherm animals has gained considerable attention in the face of human-induced climate change. Particularly in aquatic species, the experimental assessment of critical thermal limits (CTmin and CTmax) may help to predict possible effects of global warming on habitat suitability and ultimately species survival. Here we present data on the thermal limits of two endemic and endangered extremophile fish species, inhabiting a geothermally heated and sulfur-rich spring system in southern Mexico: The sulfur molly (Poecilia sulphuraria) and the widemouth gambusia (Gambusia eurystoma). Besides physiological challenges induced by toxic hydrogen sulfide and related severe hypoxia during the day, water temperatures have been previously reported to exceed those of nearby clearwater streams. We now present temperature data for various locations and years in the sulfur spring complex and conducted laboratory thermal tolerance tests (CTmin and CTmax) both under normoxic and severe hypoxic conditions in both species. Average CTmax limits did not differ between species when dissolved oxygen was present. However, critical temperature (CTmax=43.2°C) in P. sulphuraria did not change when tested under hypoxic conditions, while G. eurystoma on average had a lower CTmax when oxygen was absent. Based on this data we calculated both species' thermal safety margins and used a TDT (thermal death time) model framework to relate our experimental data to observed temperatures in the natural habitat. Our findings suggest that both species live near their thermal limits during the annual dry season and are locally already exposed to temperatures above their critical thermal limits. We discuss these findings in the light of possible physiological adaptions of the sulfur-adapted fish species and the anthropogenic threats for this unique system.
Collapse
Affiliation(s)
- Korbinian Pacher
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Natalia Hernández-Román
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - Alejandro Juarez-Lopez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | | | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Yunus Sevinchan
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Lenin Arias-Rodríguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| |
Collapse
|
6
|
Desvignes T, Bista I, Herrera K, Landes A, Postlethwait JH. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes. Mol Biol Evol 2023; 40:msad236. [PMID: 37879119 PMCID: PMC10651078 DOI: 10.1093/molbev/msad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Expression of multiple hemoglobin isoforms with differing physiochemical properties likely helps species adapt to different environmental and physiological conditions. Antarctic notothenioid fishes inhabit the icy Southern Ocean and display fewer hemoglobin isoforms, each with less affinity for oxygen than temperate relatives. Reduced hemoglobin multiplicity was proposed to result from relaxed selective pressure in the cold, thermally stable, and highly oxygenated Antarctic waters. These conditions also permitted the survival and diversification of white-blooded icefishes, the only vertebrates living without hemoglobin. To understand hemoglobin evolution during adaptation to freezing water, we analyzed hemoglobin genes from 36 notothenioid genome assemblies. Results showed that adaptation to frigid conditions shaped hemoglobin gene evolution by episodic diversifying selection concomitant with cold adaptation and by pervasive evolution in Antarctic notothenioids compared to temperate relatives, likely a continuing adaptation to Antarctic conditions. Analysis of hemoglobin gene expression in adult hematopoietic organs in various temperate and Antarctic species further revealed a switch in hemoglobin gene expression underlying hemoglobin multiplicity reduction in Antarctic fish, leading to a single hemoglobin isoform in adult plunderfishes and dragonfishes, the sister groups to icefishes. The predicted high hemoglobin multiplicity in Antarctic fish embryos based on transcriptomic data, however, raises questions about the molecular bases and physiological implications of diverse hemoglobin isoforms in embryos compared to adults. This analysis supports the hypothesis that the last common icefish ancestor was vulnerable to detrimental mutations affecting the single ancestral expressed alpha- and beta-globin gene pair, potentially predisposing their subsequent loss.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Iliana Bista
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt 60325, Germany
- Senckenberg Research Institute, Frankfurt 60325, Germany
| | - Karina Herrera
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Audrey Landes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
7
|
Ward LM, McMahan CD, Khakurel B, Wright AM, Piller KR. Genomic data support the taxonomic validity of Middle American livebearers Poeciliopsis gracilis and Poeciliopsis pleurospilus (Cyprinodontiformes: Poeciliidae). PLoS One 2022; 17:e0262687. [PMID: 35100283 PMCID: PMC8803166 DOI: 10.1371/journal.pone.0262687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/02/2022] [Indexed: 11/18/2022] Open
Abstract
Poeciliopsis (Cyprinodontiformes: Poeciliidae) is a genus comprised of 25 species of freshwater fishes. Several well-known taxonomic uncertainties exist within the genus, especially in relation to the taxonomic status of Poeciliopsis pleurospilus and P. gracilis. However, to date, no studies have been conducted to specifically address the taxonomic status of these two species. The goal of this study was to examine the taxonomic validity of P. pleurospilus and P. gracilis using genomic data (ddRADseq) in phylogenetic, population genetic, and species delimitation frameworks. Multiple analyses support the recognition of both taxa as distinct species and also permits us to revise their respective distributions. A species delimitation analysis indicates that P. pleurospilus and P. gracilis are distinct species, each of which consists of two distinct lineages that are geographically structured. Phylogenetic and population genetic analyses provide clear evidence that individuals of P. gracilis are distributed north and west of the Isthmus of Tehuantepec in both Pacific and Atlantic river systems in Mexico, whereas individuals of P. pleurospilus are distributed in both Atlantic and Pacific river systems south and east of the Isthmus of Tehuantepec, from southern Mexico to Honduras.
Collapse
Affiliation(s)
- Liam M. Ward
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Caleb D. McMahan
- Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Basanta Khakurel
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - April M. Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Kyle R. Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| |
Collapse
|
8
|
Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM. The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110629. [PMID: 34058376 DOI: 10.1016/j.cbpb.2021.110629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Fishes respond to different abiotic and biotic stressors through changes in gene expression as a part of an integrated physiological response. Transcriptomics approaches have been used to quantify gene expression patterns as a reductionist approach to understand responses to environmental stressors in animal physiology and have become more commonly used to study wild fishes. We argue that non-lethal sampling for transcriptomics should become the norm for assessing the physiological status of wild fishes, especially when there are conservation implications. Processes at the level of the transcriptome provide a "snapshot" of the cellular conditions at a given time; however, by using a non-lethal sampling protocol, researchers can connect the transcriptome profile with fitness-relevant ecological endpoints such as reproduction, movement patterns and survival. Furthermore, telemetry is a widely used approach in fisheries to understand movement patterns in the wild, and when combined with transcriptional profiling, provides arguably the most powerful use of non-lethal sampling for transcriptomics in wild fishes. In this review, we discuss the different tissues that can be successfully incorporated into non-lethal sampling strategies, which is particularly useful in the context of the emerging field of conservation transcriptomics. We briefly describe different methods for transcriptional profiling in fishes from high-throughput qPCR to whole transcriptome approaches. Further, we discuss strategies and the limitations of using transcriptomics for non-lethally studying fishes. Lastly, as 'omics' technology continues to advance, transcriptomics paired with different omics approaches to study wild fishes will provide insight into the factors that regulate phenotypic variation and the physiological responses to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - Sonya Michaleski
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel D Heath
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
9
|
Lukas J, Auer F, Goldhammer T, Krause J, Romanczuk P, Klamser P, Arias-Rodriguez L, Bierbach D. Diurnal Changes in Hypoxia Shape Predator-Prey Interaction in a Bird-Fish System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals often face changing environments, and behavioral flexibility allows them to rapidly and adaptively respond to abiotic factors that vary more or less regularly. However, abiotic factors that affect prey species do not necessarily affect their predators. Still, the prey’s response might affect the predator indirectly, yet evidence from the wild for such a classical bottom-up effect of abiotic factors shaping several trophic levels remains sparse. In many aquatic environments, daily changes in oxygen concentrations occur frequently. When oxygen levels drop to hypoxic levels, many fishes respond with aquatic surface respiration (ASR), during which they obtain oxygen by skimming the upper, oxygenated surface layer. By increasing time at the surface, fish become more vulnerable to fish-eating birds. We explored these cascading effects in a sulfidic spring system that harbors the endemic sulphur molly (Poecilia sulphuraria) as prey species and several fish-eating bird species. Sulfide-rich springs pose harsh conditions as hydrogen sulfide (H2S) is lethal to most metazoans and reduces dissolved oxygen (DO). Field sampling during three daytimes indicated that water temperatures rose from morning to (after)noon, resulting in the already low DO levels to decrease further, while H2S levels showed no diurnal changes. The drop in DO levels was associated with a decrease in time spent diving in sulphur mollies, which corresponded with an increase in ASR. Interestingly, the laboratory-estimated threshold at which the majority of sulphur mollies initiate ASR (ASR50: <1.7 mg/L DO) was independent of temperature and this value was exceeded daily when hypoxic stress became more severe toward noon. As fish performed ASR, large aggregations built up at the water surface over the course of the day. As a possible consequence of fish spending more time at the surface, we found high activity levels of fish-eating birds at noon and in the afternoon. Our study reveals that daily fluctuations in water’s oxygen levels have the potential to alter predator-prey interactions profoundly and thus highlights the joined actions of abiotic and biotic factors shaping the evolution of a prey species.
Collapse
|
10
|
Thorstensen MJ, Jeffrey JD, Treberg JR, Watkinson DA, Enders EC, Jeffries KM. Genomic signals found using RNA sequencing show signatures of selection and subtle population differentiation in walleye ( Sander vitreus) in a large freshwater ecosystem. Ecol Evol 2020; 10:7173-7188. [PMID: 32760520 PMCID: PMC7391302 DOI: 10.1002/ece3.6418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing is an effective approach for studying aquatic species yielding both physiological and genomic data. However, its population genetic applications are not well-characterized. We investigate this possible role for RNA sequencing for population genomics in Lake Winnipeg, Manitoba, Canada, walleye (Sander vitreus). Lake Winnipeg walleye represent the largest component of the second-largest freshwater fishery in Canada. In the present study, large female walleye were sampled via nonlethal gill biopsy over two years at three spawning sites representing a latitudinal gradient in the lake. Genetic variation from sequenced mRNA was analyzed for neutral and adaptive markers to investigate population structure and possible adaptive variation. We find low population divergence (F ST = 0.0095), possible northward gene flow, and outlier loci that vary latitudinally in transcripts associated with cell membrane proteins and cytoskeletal function. These results indicate that Lake Winnipeg walleye may be effectively managed as a single demographically connected metapopulation with contributing subpopulations and suggest genomic differences possibly underlying observed phenotypic differences. Despite its high cost relative to other genotyping methods, RNA sequencing data can yield physiological in addition to genetic information discussed here. We therefore argue that it is useful for addressing diverse molecular questions in the conservation of freshwater species.
Collapse
Affiliation(s)
| | | | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| | | | - Eva C. Enders
- Freshwater Institute, Fisheries and Oceans CanadaWinnipegMBCanada
| | - Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
11
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
12
|
Abstract
The diversity of fish hemoglobins and the association with oxygen availability and physiological requirements during the life cycle has attracted scientists since the first report on multiple hemoglobin in fishes (Buhler and Shanks 1959). The functional heterogeneity of the fish hemoglobins enables many species to tolerate hypoxic conditions and exhausting swimming, but also to maintain the gas pressure in the swim bladder at large depths. The hemoglobin repertoire has further increased in various species displaying polymorphic hemoglobin variants differing in oxygen binding properties. The multiplicity of fish hemoglobins as particularly found in the tetraploid salmonids strongly contrasts with the complete loss of hemoglobins in Antarctic icefishes and illustrates the adaptive radiation in the oxygen transport of this successful vertebrate group.
Collapse
Affiliation(s)
- Øivind Andersen
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), PO BOX 210,1431, Ås, Norway.
| |
Collapse
|
13
|
Brown AP, McGowan KL, Schwarzkopf EJ, Greenway R, Rodriguez LA, Tobler M, Kelley JL. Local ancestry analysis reveals genomic convergence in extremophile fishes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180240. [PMID: 31154969 DOI: 10.1098/rstb.2018.0240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular basis of convergent phenotypes is often unknown. However, convergence at a genomic level is predicted when there are large population sizes, gene flow among diverging lineages or strong genetic constraints. We used whole-genome resequencing to investigate genomic convergence in fishes ( Poecilia spp.) that have repeatedly colonized hydrogen sulfide (H2S)-rich environments in Mexico. We identified genomic similarities in both single nucleotide polymorphisms (SNPs) and structural variants (SVs) among independently derived sulfide spring populations, with approximately 1.2% of the genome being shared among sulfidic ecotypes. We compared these convergent genomic regions to candidate genes for H2S adaptation identified from transcriptomic analyses and found that a significant proportion of these candidate genes (8%) were also in regions where sulfidic individuals had similar SNPs, while only 1.7% were in regions where sulfidic individuals had similar SVs. Those candidate genes included genes involved in sulfide detoxification, the electron transport chain (the main toxicity target of H2S) and other processes putatively important for adaptation to sulfidic environments. Regional genomic similarity across independent populations exposed to the same source of selection is consistent with selection on standing variation or introgression of adaptive alleles across divergent lineages. However, combined with previous analyses, our data also support that adaptive changes in mitochondrially encoded subunits arose independently via selection on de novo mutations. Pressing questions remain on what conditions ultimately facilitate the independent rise of adaptive alleles at the same loci in separate populations, and thus, the degree to which evolution is repeatable or predictable. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Anthony P Brown
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Kerry L McGowan
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Enrique J Schwarzkopf
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Ryan Greenway
- 2 Division of Biology, Kansas State University , 116 Ackert Hall, Manhattan, KS 66506 , USA
| | - Lenin Arias Rodriguez
- 3 División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT) , CP 86150 Villahermosa, Tabasco , México
| | - Michael Tobler
- 2 Division of Biology, Kansas State University , 116 Ackert Hall, Manhattan, KS 66506 , USA
| | - Joanna L Kelley
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| |
Collapse
|
14
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Morgan TJ, Herman MA, Johnson LC, Olson BJ, Ungerer MC. Ecological Genomics: genes in ecology and ecology in genes. Genome 2018; 61:v-vii. [DOI: 10.1139/gen-2018-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Theodore J. Morgan
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Michael A. Herman
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Loretta C. Johnson
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Bradley J.C.S. Olson
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Mark C. Ungerer
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Tobler M, Kelley JL, Plath M, Riesch R. Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Mol Ecol 2018; 27:843-859. [DOI: 10.1111/mec.14497] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| | - Joanna L. Kelley
- School of Biological Sciences Washington State University Pullman WA USA
| | - Martin Plath
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi China
| | - Rüdiger Riesch
- School of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham Surrey UK
| |
Collapse
|