1
|
Kuo WH, Cunningham E, Guo E, Olsen KM. Genetics and plasticity of white leaf mark variegation in white clover (Trifolium repens L.). ANNALS OF BOTANY 2024; 134:949-958. [PMID: 39115051 PMCID: PMC11687625 DOI: 10.1093/aob/mcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND AND AIMS Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system in which to examine the genetic basis of this phenotype and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. In this study, we sought to map the loci controlling the white leaf mark in white clover and to evaluate the relationship between white leaf mark, leaf thickness and photosynthetic efficiency. METHODS We generated a high-density genetic linkage map from an F3 mapping population, using reference genome-based single nucleotide polymorphism markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness might affect the variegation phenotype. Mapping of quantitative trait loci was performed to characterize their genetic basis. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to the intensity of variegation. The presence and intensity of white leaf mark were associated with greater leaf thickness; however, increased variegation did not affect photosynthetic efficiency detectably. CONCLUSIONS We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors might maintain the white leaf mark polymorphism in white clover.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eimear Cunningham
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Guo
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Fortune K, Torabi S, Eskandari M. Genome-wide association mapping in exotic × Canadian elite crosses: mining beneficial alleles for agronomic and seed composition traits in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1490767. [PMID: 39610886 PMCID: PMC11602288 DOI: 10.3389/fpls.2024.1490767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
Given the narrow genetic base of North American soybean germplasm, which originates from approximately 35 ancestral lines, discovering and introducing useful diversity for key traits in exotic germplasm could potentially enhance diversity in the current elite gene pool. This study explores the potential of exotic germplasm to enhance yield and agronomic traits in the University of Guelph soybean germplasm. We utilized a nested association mapping (NAM) design to develop a population (n = 294) composed of crosses of high-yielding Canadian elite cultivar, OAC Bruton, with four high-yielding exotic lines developed at USDA (Urbana, IL), and we mapped the genetic architecture of agronomic and seed composition traits using association mapping methods. The analysis across three Southwestern Ontario environments revealed seven unique genomic regions underlying agronomic traits and four for seed composition traits, with both desirable and undesirable alleles from the exotic parents. Notably, a region on chromosome 10, co-locating to the E2 maturity locus, was found to be associated with seed yield and maturity. The allele that increased yield by 166 kg/ha was contributed by all exotic parents and was absent in the Canadian-adapted parent. The study underscores the potential of using exotic germplasm to introduce novel genetic diversity into the Canadian elite soybean breeding pool. By identifying exotic-derived beneficial alleles, our findings offer a pathway for enhancing agronomic traits in Canadian soybeans with novel exotic diversity.
Collapse
Affiliation(s)
| | | | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Plant Agriculture,
Guelph, ON, Canada
| |
Collapse
|
3
|
de Ronne M, Abed A, Légaré G, Laroche J, Boucher St-Amour VT, Fortier É, Beattie A, Badea A, Khanal R, O'Donoughue L, Rajcan I, Belzile F, Boyle B, Torkamaneh D. Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:247. [PMID: 39365439 DOI: 10.1007/s00122-024-04750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Amina Abed
- Consortium de Recherche Sur La Pomme de Terre du Québec (CRPTQ), Québec, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Éric Fortier
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Aaron Beattie
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, Canada
| | - Raja Khanal
- Agriculture and Agri-Food Canada, Ottawa Research and Development Center, Ottawa, Canada
| | - Louise O'Donoughue
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, Canada.
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada.
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada.
- Institut Intelligence Et Données (IID), Université Laval, Québec, Canada.
| |
Collapse
|
4
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
de Ronne M, Lapierre É, Torkamaneh D. Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies. Sci Rep 2024; 14:9162. [PMID: 38644388 PMCID: PMC11033274 DOI: 10.1038/s41598-024-58931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Éliana Lapierre
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada.
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
6
|
Nazzicari N, Franguelli N, Ferrari B, Pecetti L, Annicchiarico P. The Effect of Genome Parametrization and SNP Marker Subsetting on Genomic Selection in Autotetraploid Alfalfa. Genes (Basel) 2024; 15:449. [PMID: 38674384 PMCID: PMC11050091 DOI: 10.3390/genes15040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Alfalfa, the most economically important forage legume worldwide, features modest genetic progress due to long selection cycles and the extent of the non-additive genetic variance associated with its autotetraploid genome. METHODS To improve the efficiency of genomic selection in alfalfa, we explored the effects of genome parametrization (as tetraploid and diploid dosages, plus allele ratios) and SNP marker subsetting (all available SNPs, only genic regions, and only non-genic regions) on genomic regressions, together with various levels of filtering on reading depth and missing rates. We used genotyping by sequencing-generated data and focused on traits of different genetic complexity, i.e., dry biomass yield in moisture-favorable (FE) and drought stress (SE) environments, leaf size, and the onset of flowering, which were assessed in 143 genotyped plants from a genetically broad European reference population and their phenotyped half-sib progenies. RESULTS On average, the allele ratio improved the predictive ability compared with other genome parametrizations (+7.9% vs. tetraploid dosage, +12.6% vs. diploid dosage), while using all the SNPs offered an advantage compared with any specific SNP subsetting (+3.7% vs. genic regions, +7.6% vs. non-genic regions). However, when focusing on specific traits, different combinations of genome parametrization and subsetting achieved better performances. We also released Legpipe2, an SNP calling pipeline tailored for reduced representation (GBS, RAD) in medium-sized genotyping experiments.
Collapse
Affiliation(s)
- Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Center for Animal Production and Aquaculture, Viale Piacenza 29, 26900 Lodi, Italy
| | | | | | | | | |
Collapse
|
7
|
Tucker JR, Badea A, Blackwell BA, MacEachern D, Mills A. Bringing Barley Back: Analysis of Heritage Varieties for Use as Germplasm Sources to Improve Resistance against the Most Devastating, Contemporary Disease in Canada, Fusarium Head Blight ( Fusarium graminearum). PLANTS (BASEL, SWITZERLAND) 2024; 13:799. [PMID: 38592826 PMCID: PMC10974673 DOI: 10.3390/plants13060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is currently the most devastating disease for barley (Hordeum vulgare) in Canada. Associated mycotoxins can compromise grain quality, where deoxynivalenol (DON) is considered particularly damaging due to its frequency of detection. Breeding barley with a lower DON content is difficult, due to the poor adaptation and malt quality of resistance sources. A set of European-derived heritage varieties were screened in an FHB nursery in Charlottetown, PE, with selections tested at Brandon, MB, between 2018-2022. Genetic evaluation demonstrated a distinct clustering of Canadian varieties from the heritage set. At Brandon, 72% of the heritage varieties ranked lower for DON content than did the moderately resistant Canadian check 'AAC Goldman', but resistance was associated with later heading and taller stature. In contrast with Canadian modern malting variety 'AAC Synergy', general deficiencies were observed in yield, enzyme activity, and extract, along with higher protein content. Nonetheless, several resistant varieties were identified with reasonable a heading date and yield, including 'Chevallier Chile', 'Domen', 'Djugay', 'Hannchen', 'Heils Franken', 'Moravian Barley', 'Loosdorfer' with 'Golden Melon', 'Nutans Moskva', and 'Vellavia', these being some of the most promising varieties when malting quality characteristics were also considered. These heritage resources could be used as parents in breeding to develop FHB-resistant malting barley varieties.
Collapse
Affiliation(s)
- James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada;
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada;
| | - Barbara A. Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Dan MacEachern
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada; (D.M.); (A.M.)
| | - Aaron Mills
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada; (D.M.); (A.M.)
| |
Collapse
|
8
|
He L, Luo J, Niu S, Bai D, Chen Y. Population structure analysis to explore genetic diversity and geographical distribution characteristics of wild tea plant in Guizhou Plateau. BMC PLANT BIOLOGY 2023; 23:255. [PMID: 37189087 DOI: 10.1186/s12870-023-04239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Tea, the second largest consumer beverage in the world after water, is widely cultivated in tropical and subtropical areas. However, the effect of environmental factors on the distribution of wild tea plants is unclear. RESULTS A total of 159 wild tea plants were collected from different altitudes and geological types of the Guizhou Plateau. Using the genotyping-by-sequencing method, 98,241 high-quality single nucleotide polymorphisms were identified. Genetic diversity, population structure analysis, principal component analysis, phylogenetic analysis, and linkage disequilibrium were performed. The genetic diversity of the wild tea plant population from the Silicate Rock Classes of Camellia gymnogyna was higher than that from the Carbonate Rock Classes of Camellia tachangensis. In addition, the genetic diversity of wild tea plants from the second altitude gradient was significantly higher than that of wild tea plants from the third and first altitude gradients. Two inferred pure groups (GP01 and GP02) and one inferred admixture group (GP03) were identified by population structure analysis and were verified by principal component and phylogenetic analyses. The highest differentiation coefficients were determined for GP01 vs. GP02, while the lowest differentiation coefficients were determined for GP01 vs. GP03. CONCLUSIONS This study revealed the genetic diversity and geographical distribution characteristics of wild tea plants in the Guizhou Plateau. There are significant differences in genetic diversity and evolutionary direction between Camellia tachangensis with Carbonate Rock Classes at the first altitude gradient and Camellia gymnogyna with Silicate Rock Classes at the third altitude gradient. Geological environment, soil mineral element content, soil pH, and altitude markedly contributed to the genetic differentiation between Camellia tachangensis and Camellia gymnogyna.
Collapse
Affiliation(s)
- Limin He
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Jing Luo
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Suzhen Niu
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Ministry of Education, Institute of Agro-Bioengineering, Guiyang, 550025, Guizhou Province, People's Republic of China.
| | - Dingchen Bai
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Yanjun Chen
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| |
Collapse
|
9
|
de Ronne M, Légaré G, Belzile F, Boyle B, Torkamaneh D. 3D-GBS: a universal genotyping-by-sequencing approach for genomic selection and other high-throughput low-cost applications in species with small to medium-sized genomes. PLANT METHODS 2023; 19:13. [PMID: 36740716 PMCID: PMC9899395 DOI: 10.1186/s13007-023-00990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Despite the increased efficiency of sequencing technologies and the development of reduced-representation sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS procedure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-sized genome and illustrate its use in soybean. Using a combination of three restriction enzymes (PstI/NsiI/MspI), the portion of the genome that is captured was reduced fourfold (compared to a "standard" ApeKI-based protocol) while reducing the number of markers by only 40%. By better focusing the sequencing effort on limited set of restriction fragments, fourfold more samples can be genotyped at the same minimal depth of coverage. This GBS protocol also resulted in a lower proportion of missing data and provided a more uniform distribution of SNPs across the genome. Moreover, we investigated the optimal number of reads per sample needed to obtain an adequate number of markers for GS and QTL mapping (500-1000 markers per biparental cross). This optimization allows sequencing costs to be decreased by ~ 92% and ~ 86% for GS and QTL mapping studies, respectively, compared to previously published work. Overall, 3D-GBS represents a unique and affordable solution for applications requiring extremely high-throughput genotyping where cost remains the most limiting factor.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada.
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada.
- Institut intelligence et données (IID), Université Laval, Quebec, Canada.
| |
Collapse
|
10
|
Yoosefzadeh-Najafabadi M, Rajcan I, Eskandari M. Optimizing genomic selection in soybean: An important improvement in agricultural genomics. Heliyon 2022; 8:e11873. [PMID: 36468106 PMCID: PMC9713349 DOI: 10.1016/j.heliyon.2022.e11873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Fast-paced yield improvement in strategic crops such as soybean is pivotal for achieving sustainable global food security. Precise genomic selection (GS), as one of the most effective genomic tools for recognizing superior genotypes, can accelerate the efficiency of breeding programs through shortening the breeding cycle, resulting in significant increases in annual yield improvement. In this study, we investigated the possible use of haplotype-based GS to increase the prediction accuracy of soybean yield and its component traits through augmenting the models by using sophisticated machine learning algorithms and optimized genetic information. The results demonstrated up to a 7% increase in the prediction accuracy when using haplotype-based GS over the full single nucleotide polymorphisms-based GS methods. In addition, we discover an auspicious haplotype block on chromosome 19 with significant impacts on yield and its components, which can be used for screening climate-resilient soybean genotypes with improved yield in large breeding populations.
Collapse
Affiliation(s)
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Hong H, Najafabadi MY, Torkamaneh D, Rajcan I. Identification of quantitative trait loci associated with seed quality traits between Canadian and Ukrainian mega-environments using genome-wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2515-2530. [PMID: 35716202 DOI: 10.1007/s00122-022-04134-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE Identifying QTL associated with soybean seed quality traits from a diverse GWAS panel cultivated in Canadian and Ukrainian mega-environments may facilitate future cultivar development for foreign markets. Understanding the complex genetic basis of seed quality traits for soybean in the mega-environments (MEs) is critical for developing a marker-assisted selection program that will lead to breeding superior cultivars adapted to specific regions. This study aimed to analyze the accumulation of 14 soybean seed quality traits in Canadian ME and two seed quality traits in Ukrainian ME and identify associated ME specific quantitative trait loci (QTLSP) and ME universal QTL (QTLU) for protein and oil using a genome-wide association study (GWAS) panel consisting of 184 soybean genotypes. The panel was planted in three locations in Canada and two locations in Ukraine in 2018 and 2019. Genotype plus genotype-by-environment biplot analysis was conducted to assess the accumulation of individual seed compounds across different locations. The protein accumulation was high in the Canadian ME and low in the Ukrainian ME, whereas the oil concentration showed the opposite trends between the two MEs. No QTLU were identified across the MEs for protein and oil concentrations. In contrast, nine Canadian QTLSP for protein were identified on various chromosomes, which were co-located with QTL controlling other traits identified in the Canadian ME. The lack of common QTLU for protein and oil suggests that it may be necessary to use QTLSP associated with these traits separately for the Canadian and Ukrainian ME. Additional Ukrainian data for seed compounds other than oil and protein are required to identify novel QTLSP and QTLU for such traits for the individual or combined Canadian and Ukrainian MEs.
Collapse
Affiliation(s)
- Huilin Hong
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Brock JR, Ritchey MM, Olsen KM. Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. AMERICAN JOURNAL OF BOTANY 2022; 109:1177-1190. [PMID: 35716121 PMCID: PMC9542853 DOI: 10.1002/ajb2.16027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Camelina (gold-of-pleasure or false flax) is an ancient oilseed crop with emerging applications in the production of sustainable, low-input biofuels. Previous domestication hypotheses suggested a European or western Asian origin, yet little genetic evidence has existed to assess the geographical origin for this crop, and archaeological data have not been systematically surveyed. METHODS We utilized genotyping-by-sequencing of 185 accessions of C. sativa and its wild relatives to examine population structure within the crop species and its relationship to populations of its wild progenitor, C. microcarpa; cytotype variation was also assessed in both species. In a complementary analysis, we surveyed the archaeological literature to identify sites with archaeobotanical camelina remains and assess the timing and prevalence of usage across Europe and western Asia. RESULTS The majority of C. microcarpa sampled in Europe and the United States belongs to a variant cytotype (2n = 38) with a distinct evolutionary origin from that of the crop lineage (2n = 40). Populations of C. microcarpa from Transcaucasia (South Caucasus) are most closely related to C. sativa based on cytotype and population structure; in combination with archaeological insights, these data refute prior hypotheses of a European domestication origin. CONCLUSIONS Our findings support a Caucasus, potentially Armenian, origin of C. sativa domestication. We cannot definitively determine whether C. sativa was intentionally targeted for domestication in its own right or instead arose secondarily through selection for agricultural traits in weedy C. sativa, as originally proposed by Vavilov for this species.
Collapse
Affiliation(s)
- Jordan R. Brock
- Department of BiologyWashington University in St. LouisSt. LouisMissouri63130USA
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Melissa M. Ritchey
- Department of AnthropologyWashington University in St. LouisSt. LouisMissouri63130USA
| | - Kenneth M. Olsen
- Department of BiologyWashington University in St. LouisSt. LouisMissouri63130USA
| |
Collapse
|
13
|
Yoosefzadeh-Najafabadi M, Eskandari M, Torabi S, Torkamaneh D, Tulpan D, Rajcan I. Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components. Int J Mol Sci 2022; 23:5538. [PMID: 35628351 PMCID: PMC9141736 DOI: 10.3390/ijms23105538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
A genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS methods are suffering from. Using sophisticated mathematical methods such as machine learning (ML) algorithms may address this issue and advance the implication of this valuable genetic method in applied plant-breeding programs. In this study, we evaluated the potential use of two ML algorithms, support-vector machine (SVR) and random forest (RF), in a GWAS and compared them with two conventional methods of mixed linear models (MLM) and fixed and random model circulating probability unification (FarmCPU), for identifying MTAs for soybean-yield components. In this study, important soybean-yield component traits, including the number of reproductive nodes (RNP), non-reproductive nodes (NRNP), total nodes (NP), and total pods (PP) per plant along with yield and maturity, were assessed using a panel of 227 soybean genotypes evaluated at two locations over two years (four environments). Using the SVR-mediated GWAS method, we were able to discover MTAs colocalized with previously reported quantitative trait loci (QTL) with potential causal effects on the target traits, supported by the functional annotation of candidate gene analyses. This study demonstrated the potential benefit of using sophisticated mathematical approaches, such as SVR, in a GWAS to complement conventional GWAS methods for identifying MTAs that can improve the efficiency of genomic-based soybean-breeding programs.
Collapse
Affiliation(s)
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.-N.); (S.T.); (I.R.)
| | - Sepideh Torabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.-N.); (S.T.); (I.R.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Dan Tulpan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.-N.); (S.T.); (I.R.)
| |
Collapse
|
14
|
Priyanatha C, Torkamaneh D, Rajcan I. Genome-Wide Association Study of Soybean Germplasm Derived From Canadian × Chinese Crosses to Mine for Novel Alleles to Improve Seed Yield and Seed Quality Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:866300. [PMID: 35419011 PMCID: PMC8996715 DOI: 10.3389/fpls.2022.866300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 05/16/2023]
Abstract
Genome-wide association study (GWAS) has emerged in the past decade as a viable tool for identifying beneficial alleles from a genomic diversity panel. In an ongoing effort to improve soybean [Glycine max (L.) Merr.], which is the third largest field crop in Canada, a GWAS was conducted to identify novel alleles underlying seed yield and seed quality and agronomic traits. The genomic panel consisted of 200 genotypes including lines derived from several generations of bi-parental crosses between modern Canadian × Chinese cultivars (CD-CH). The genomic diversity panel was field evaluated at two field locations in Ontario in 2019 and 2020. Genotyping-by-sequencing (GBS) was conducted and yielded almost 32 K high-quality SNPs. GWAS was conducted using Fixed and random model Circulating Probability Unification (FarmCPU) model on the following traits: seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score that allowed to identify five QTL regions controlling seed yield and seed oil and protein content. A candidate gene search identified a putative gene for each of the three traits. The results of this GWAS study provide insight into potentially valuable genetic resources residing in Chinese modern cultivars that breeders may use to further improve soybean seed yield and seed quality traits.
Collapse
Affiliation(s)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- *Correspondence: Istvan Rajcan,
| |
Collapse
|
15
|
Yoosefzadeh-Najafabadi M, Torabi S, Tulpan D, Rajcan I, Eskandari M. Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:777028. [PMID: 34880894 PMCID: PMC8647880 DOI: 10.3389/fpls.2021.777028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 05/12/2023]
Abstract
In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.
Collapse
Affiliation(s)
| | - Sepideh Torabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Dan Tulpan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Torkamaneh D, Laroche J, Boyle B, Hyten DL, Belzile F. A bumper crop of SNPs in soybean through high-density genotyping-by-sequencing (HD-GBS). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:860-862. [PMID: 33476468 PMCID: PMC8131051 DOI: 10.1111/pbi.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/14/2021] [Indexed: 05/03/2023]
Affiliation(s)
- Davoud Torkamaneh
- Département de PhytologieUniversité LavalQuébec CityQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQCCanada
- Department of Plant AgricultureUniversity of GuelphGuelphONCanada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQCCanada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQCCanada
| | - David L. Hyten
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - François Belzile
- Département de PhytologieUniversité LavalQuébec CityQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQCCanada
| |
Collapse
|