1
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
2
|
Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int J Mol Sci 2021; 22:8202. [PMID: 34360967 PMCID: PMC8347714 DOI: 10.3390/ijms22158202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Microbial biodegradation is one of the acceptable technologies to remediate and control the pollution by polycyclic aromatic hydrocarbon (PAH). Several bacteria, fungi, and cyanobacteria strains have been isolated and used for bioremediation purpose. This review paper is intended to provide key information on the various steps and actors involved in the bacterial and fungal aerobic and anaerobic degradation of pyrene, a high molecular weight PAH, including catabolic genes and enzymes, in order to expand our understanding on pyrene degradation. The aerobic degradation pathway by Mycobacterium vanbaalenii PRY-1 and Mycobactetrium sp. KMS and the anaerobic one, by the facultative bacteria anaerobe Pseudomonas sp. JP1 and Klebsiella sp. LZ6 are reviewed and presented, to describe the complete and integrated degradation mechanism pathway of pyrene. The different microbial strains with the ability to degrade pyrene are listed, and the degradation of pyrene by consortium is also discussed. The future studies on the anaerobic degradation of pyrene would be a great initiative to understand and address the degradation mechanism pathway, since, although some strains are identified to degrade pyrene in reduced or total absence of oxygen, the degradation pathway of more than 90% remains unclear and incomplete. Additionally, the present review recommends the use of the combination of various strains of anaerobic fungi and a fungi consortium and anaerobic bacteria to achieve maximum efficiency of the pyrene biodegradation mechanism.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni 269, Comoros
| | - Jie Kan
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Hui Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| |
Collapse
|
3
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
4
|
Vieira GAL, Magrini MJ, Bonugli-Santos RC, Rodrigues MVN, Sette LD. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process. Braz J Microbiol 2018; 49:749-756. [PMID: 29805073 PMCID: PMC6175740 DOI: 10.1016/j.bjm.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/14/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022] Open
Abstract
Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL-1) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology.
Collapse
Affiliation(s)
- Gabriela A L Vieira
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Bioquímica e Microbiologia, Rio Claro, SP, Brazil
| | - Mariana Juventina Magrini
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil
| | - Rafaella C Bonugli-Santos
- Universidade Federal da Integração Latino-Americana (UNILA), Instituto Latino Americano de Ciências da Vida e da Natureza, Foz do Iguaçu, PR, Brazil
| | - Marili V N Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil
| | - Lara D Sette
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Bioquímica e Microbiologia, Rio Claro, SP, Brazil; Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil.
| |
Collapse
|
5
|
Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci (China) 2017; 51:52-74. [PMID: 28115152 DOI: 10.1016/j.jes.2016.08.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Maximiliano Cledon
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Saurabhjyoti Sarma
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, QC G2C 1T9, Canada
| |
Collapse
|
6
|
HELLOU JOCELYNE, BEACH DANIELG, LEONARD JAMES, BANOUB JOSEPHH. Integrating Field Analyses with Laboratory Exposures to Assess Ecosystems Health. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Beach DG, Quilliam MA, Rouleau C, Croll RP, Hellou J. Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:779-788. [PMID: 20821506 DOI: 10.1002/etc.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fates of a phenolic contaminant and its hydrocarbon precursor have rarely been compared, especially in an invertebrate species. Two groups of Buccinum undatum were exposed to equimolar amounts of pyrene and 1-hydroxypyrene over 15 d through their diets. Tissue extracts from the muscle and visceral mass were analyzed by liquid chromatography with fluorescence and mass spectrometry detection. Nine biotransformation products were detected in animals from both exposures. These included 1-hydroxypyrene, pyrene-1-sulfate, pyrene-1-glucuronide, pyrene glucose sulfate, two isomers each of pyrenediol sulfate and pyrenediol disulfate, and one isomer of pyrenediol glucuronide sulfate. These compounds represent a more complex metabolic pathway for pyrene than is typically reported. Diconjugated metabolites were as important in animals exposed to pyrene as in those exposed to 1-hydroxypyrene. Biotransformation products represented >90% of the material detected in the animals and highlight the importance of analyzing metabolites when assessing exposure. A mean of only 2 to 3% of the body burden was present in muscle compared with the visceral mass of both groups. The analytical methods were sufficiently sensitive to detect biotransformation products both in laboratory control whelks and in those sampled offshore. The tissue distribution of [(14)C]pyrene was also studied by autoradiography. Radioactivity was present primarily in the digestive and excretory system of the whelks and not in the gonads or muscle tissue.
Collapse
Affiliation(s)
- Daniel G Beach
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
| | | | | | | | | |
Collapse
|
8
|
Beach DG, Quilliam MA, Hellou J. Analysis of pyrene metabolites in marine snails by liquid chromatography using fluorescence and mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2142-52. [DOI: 10.1016/j.jchromb.2009.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
9
|
Mori Y, Shinoda H, Nakano T, Takasu R, Kitagawa T. Laser-induced formation of pyrenyloxy radical from 1-hydoxypyrene and further oxidation: Micellar effects. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2006.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Kuhn A, Ballach HJ, Wittig R. Studies in the biodegradation of 5 PAHs (phenanthrene, pyrene, fluoranthene, chrysene und benzo(a)pyrene) in the presence of rooted poplar cuttings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2004; 11:22-32. [PMID: 15005137 DOI: 10.1065/espr2003.11.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cuttings of Populus nigra L. cv. Loenen were cultivated in sand treated with one of the following PAHs: phenanthrene (Phen), fluoranthene (Flt), pyrene (Pyr), chrysene (Chr) and benzo[a]pyrene (BaP). The PAHs were applied at varying levels of concentration to each test series. After 6 weeks the concentration and the distribution of the PAHs in the substrate of the various sets of tests were compared with the concentration in the substrate of the control. Additionally the substrate and the plant roots were tested for evidence of degradation products of PAHs. The results revealed that the levels of concentration of Phen and Pyr detected in the substrate surrounding the roots was in some cases significantly lower than in the corresponding section of substrate in the unplanted set (= control). This phenomenon did not occur for Flt and BaP and in the case of Chr only in those substrates, which had been treated with the highest levels of concentration. As the presence of lesser amounts of Phen and Pyr in the plant pots cannot only be attributed to their accumulation and metabolism in the roots, it is fair to assume that the chemical transformation of these three PAHs took place outside the roots. The set of tests treated with Phen revealed the presence of 2- or 3-hydroxy-Phen (main components), a hydroxy-methoxy-Phen, 9,10-Phenanthrenequinone and one unidentified compound in metabolite form. Altogether eleven metabolites of Pyr were identified in the root extracts, which can be divided into three groups: 1-Hydroxy-Pyr and derivatives, dihydroxy-Pyr and derivatives and ring fission products (4-Hydroxy-Pyr and a derivative of the 4-Phen-carbonic acid). However, the metabolite mass detected for Phen and Pyr represents only an insignificant percentage in comparison with the lesser amounts of PAHs observed in the planted set of tests. This indicates that the three PAHs were reduced to lower molecular compounds, which are methodically impossible to record, and subsequently translocated to other parts of the plant and integrated into the biomass. Although no lesser amount for Flt and BaP was found in the plant pots, 1-Hydroxy-Flt, an unidentified compound of Flt and 1-Methoxy-BaP were detected. These are presumably end products which were enhanced in the roots. It was not possible to identify any transformation products of Chr. It can be assumed that the majority of metabolites were not synthesised in the roots but are a result of microbial degradation in the rhizosphere. The test plants improved the conditions for the biotransformation of Phen and Pyr significantly and accumulated Flt, Pyr, Chr and BaP in their roots. It can therefore be concluded that the use of plants in the bioremediation of contaminated soils is a promising option.
Collapse
Affiliation(s)
- Achim Kuhn
- Dept. of Ecology and Geobotany, Botanical Institute, Johann Wolfgang Goethe-University, Siesmayerstrasse 70, D-60323 Frankfurt/Main, Germany
| | | | | |
Collapse
|
11
|
Mori Y, Shinoda H, Nakano T, Kitagawa T. Laser photolysis of pyrenesulfonate and pyrenetetrasulfonate via two-photon ionization in aqueous and reverse micellar solutions. J Photochem Photobiol A Chem 2003. [DOI: 10.1016/s1010-6030(03)00075-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
2,4,6-Trinitrotoluene (TNT) tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. ACTA ACUST UNITED AC 2002. [DOI: 10.1017/s0953756202005609] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Baldrian P, in Der Wiesche C, Gabriel J, Nerud F, Zadrazil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 2000; 66:2471-8. [PMID: 10831426 PMCID: PMC110561 DOI: 10.1128/aem.66.6.2471-2478.2000] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.
Collapse
Affiliation(s)
- P Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
14
|
Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 1997; 63:3919-25. [PMID: 9327556 PMCID: PMC168703 DOI: 10.1128/aem.63.10.3919-3925.1997] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The degradation of phenanthrene and pyrene was investigated by using five different wood-decaying fungi. After 63 days of incubation in liquid culture, 13.8 and 4.3% of the [ring U-14C]phenantherene and 2.4 and 1.4% of the [4,5,9,10-14C]pyrene were mineralized by Trametes versicolor and Kuehneromyces mutabilis, respectively. No 14CO2 evolution was detected in either [14C]phenanthrene or [14C]pyrene liquid cultures of Flammulina velutipes, Laetiporus sulphureus, and Agrocybe aegerita. Cultivation in straw cultures demonstrated that, in addition to T. versicolor (15.5%) and K. mutabilis (5.0%), L. sulphureus (10.7%) and A. aegerita (3.7%) were also capable of mineralizing phenanthrene in a period of 63 days. Additionally, K. mutabilis (6.7%), L. sulphureus (4.3%), and A. aegerita (3.3%) mineralized [14C]pyrene in straw cultures. The highest mineralization of [14C] pyrene was detected in straw cultures of T. versicolor (34.1%), which suggested that mineralization of both compounds by fungi may be independent of the number of aromatic rings. Phenanthrene and pyrene metabolites were purified by high-performance liquid chromatography and identified by UV absorption, mass, and 1H nuclear magnetic resonance spectrometry. Fungi capable of mineralizing phenanthrene and pyrene in liquid culture produced enriched metabolites substituted in the K region (C-9,10 position of phenanthrene and C-4,5 position of pyrene), whereas all other fungi investigated produced metabolites substituted in the C-1,2, C-3,4, and C-9,10 positions of phenanthrene and the C-1 position of pyrene.
Collapse
Affiliation(s)
- U Sack
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|