1
|
Chang J, Park H. Nucleotide and protein researches on anaerobic fungi during four decades. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:121-140. [PMID: 32292921 PMCID: PMC7142291 DOI: 10.5187/jast.2020.62.2.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/26/2023]
Abstract
Anaerobic fungi habitat in the gastrointestinal tract of foregut fermenters or
hindgut fermenters and degrade fibrous plant biomass through the hydrolysis
reactions with a wide variety of cellulolytic enzymes and physical penetration
through fiber matrix with their rhizoids. To date, seventeen genera have been
described in family Neocallimasticaceae, class
Neocallimastigomycetes, phylum
Neocallimastigomycota and one genus has been described in
phylum Neocallimastigomycota. In National Center for
Biotechnology Information (NCBI) database (DB), 23,830 nucleotide sequences and
59,512 protein sequences have been deposited and most of them were originated
from Piromyces, Neocallimastix and
Anaeromyces. Most of protein sequences (44,025) were
acquired with PacBio next generation sequencing system. The whole genome
sequences of Anaeromyces robustus, Neocallimastix
californiae, Pecoramyces ruminantium,
Piromyces finnis and Piromyces sp. E2 are
available in Joint Genome Institute (JGI) database. According to the results of
protein prediction, average Isoelectric points (pIs) were ranged from 5.88
(Anaeromyces) to 6.57 (Piromyces) and
average molecular weights were ranged from 38.7 kDa
(Orpinomyces) to 56.6 kDa (Piromyces). In
Carbohydrate-Active enZYmes (CAZY) database, glycoside hydrolases (36),
carbohydrate binding module (11), carbohydrate esterases (8),
glycosyltransferase (5) and polysaccharide lyases (3) from anaerobic fungi were
registered. During four decades, 1,031 research articles about anaerobic fungi
were published and 444 and 719 articles were available in PubMed (PM) and PubMed
Central (PMC) DB.
Collapse
Affiliation(s)
- Jongsoo Chang
- Department of Agricultural Sciences, Korea National Open University, Seoul 03087, Korea
| | - Hyunjin Park
- Department of Agricultural Sciences, Korea National Open University, Seoul 03087, Korea
| |
Collapse
|
2
|
Jin X, Meng N, Xia LM. Expression of an endo-β-1,4-glucanase gene from orpinomyces PC-2 in Pichia pastoris. Int J Mol Sci 2011; 12:3366-80. [PMID: 21686190 PMCID: PMC3116196 DOI: 10.3390/ijms12053366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 12/03/2022] Open
Abstract
The endo-β-1,4-glucanase gene celE from the anaerobic fungus Orpinomyces PC-2 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K, and integrated into the genome of a methylotrophic yeast P. pastoris GS115 by electroporation. The strain with highest endo-β-1,4-glucanase activity was selected and designed as P. pastoris egE, and cultivated in shaking flasks. The culture supernatant was assayed by SDS-polyacrylamide gel electrophoresis and showed a single band at about 52 kDa. Furthermore, the recombinant P. pastoris egE was proved to possess the ability to utilize sodium carboxymethyl cellulose as a carbon source. The recombinant endoglucanase produced by P. pastoris showed maximum activity at pH 6.0 and temperature 45 °C, indicating it was a mesophilic neutral endo-β-1,4-glucanase, suitable for denim biofinishing/washing. Further research was carried out in suitable fermentation medium in shaking flasks. The most favorable methanol addition concentration was discussed and given as 1.0%. After methanol induction for 96 h, the endo-β-1,4-glucanase activity reached 72.5 IU mL−1. This is the first report on expression and characterization of endo-β-1,4-glucanase from Orpinomyces in P. pastoris. The endo-β-1,4-glucanase secreted by recombinant P. pastoris represents an attractive potential for both academic research and textile industry application.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310027, China; E-Mails: (X.J.); (N.M.)
| | | | | |
Collapse
|
3
|
Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 2008; 1125:308-21. [PMID: 18378601 DOI: 10.1196/annals.1419.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaerobic fungi, first described in 1975 by Orpin, live in close contact with bacteria and other microorganisms in the rumen and caecum of herbivorous animals, where they digest ingested plant food. Seventeen distinct anaerobic fungi belonging to five different genera have been described. They have been found in at least 50 different herbivorous animals. Anaerobic fungi do not possess mitochondria, but instead have hydrogenosomes, which form hydrogen and carbon dioxide from pyruvate and malate during fermentation of carbohydrates. In addition, they are very oxygen- and temperature-sensitive, and their DNA has an unusually high AT content of from 72 to 87 mol%. My initial reason for studying anaerobic fungi was because they solubilize lignocellulose and produce all enzymes needed to efficiently hydrolyze cellulose and hemicelluloses. Although some of these enzymes are found free in the medium, most of them are associated with cellulosomal and polycellulosomal complexes, in which the enzymes are attached through fungal dockerins to scaffolding proteins; this is similar to what has been found for cellulosomes from anaerobic bacteria. Although cellulosomes from anaerobic fungi share many properties with cellulosomes of anaerobic cellulolytic bacteria and have comparable structures, their structures differ in their amino acid sequences. I discuss some features of the cellulosome of the anaerobic fungus Orpinomyces sp. PC-2 and some possible uses of its enzymes in industrial settings.
Collapse
Affiliation(s)
- Lars G Ljungdahl
- Department of Biochemistry and Molecular Biology, Fred C. Davison Life Sciences Complex, University of Georgia, Athens, GA 30602-7229, USA.
| |
Collapse
|
4
|
Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 2008; 35:635-44. [DOI: 10.1007/s10295-008-0342-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
5
|
Qi M, Jun HS, Forsberg CW. Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 2007; 73:6098-105. [PMID: 17660301 PMCID: PMC2075001 DOI: 10.1128/aem.01037-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.
Collapse
Affiliation(s)
- Meng Qi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
6
|
Tsai CF, Qiu X, Liu JH. A comparative analysis of two cDNA clones of the cellulase gene family from anaerobic fungus Piromyces rhizinflata. Anaerobe 2007; 9:131-40. [PMID: 16887700 DOI: 10.1016/s1075-9964(03)00087-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 05/12/2003] [Accepted: 05/30/2003] [Indexed: 11/28/2022]
Abstract
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | | | | |
Collapse
|
7
|
Abstract
In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which modulate the mycorrhizal symbiosis. Here, the focus is on the so-called mycorrhiza helper bacteria (MHB). This concept is revisited, and the distinction is made between the helper bacteria, which assist mycorrhiza formation, and those that interact positively with the functioning of the symbiosis. After considering some examples of MHB from the literature, the ecological and evolutionary implications of the relationships of MHB with mycorrhizal fungi are discussed. The question of the specificity of the MHB effect is addressed, and an assessment is made of progress in understanding the mechanisms of the MHB effect, which has been made possible through the development of genomics. Finally, clear evidence is presented suggesting that some MHB promote the functioning of the mycorrhizal symbiosis. This is illustrated for three critical functions of practical significance: nutrient mobilization from soil minerals, fixation of atmospheric nitrogen, and protection of plants against root pathogens. The review concludes with discussion of future research priorities regarding the potentially very fruitful concept of MHB.
Collapse
Affiliation(s)
- P Frey-Klett
- INRA, UMR1136 INRA-UHP 'Interactions Arbres/Micro-organismes', IFR 110, Centre de Nancy, 54280 Champenoux, France
| | - J Garbaye
- INRA, UMR1136 INRA-UHP 'Interactions Arbres/Micro-organismes', IFR 110, Centre de Nancy, 54280 Champenoux, France
| | - M Tarkka
- UFZ-Department of Soil Ecology, Helmholz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
| |
Collapse
|
8
|
Gao B, Allen R, Davis EL, Baum TJ, Hussey RS. Developmental expression and biochemical properties of a beta-1,4-endoglucanase family in the soybean cyst nematode, Heterodera glycines. MOLECULAR PLANT PATHOLOGY 2004; 5:93-104. [PMID: 20565586 DOI: 10.1111/j.1364-3703.2004.00209.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY The soybean cyst nematode, Heterodera glycines, produces beta-1,4-endoglucanases (cellulases) that are secreted during infection of soybean. The gene structures of three, hg-eng-4, hg-eng-5 and hg-eng-6, of the six beta-1,4-endoglucanase genes, all family 5 glycosyl hydrolases previously identified from H. glycines, are presented here. Furthermore, we present the detailed expression analyses of beta-1,4-endoglucanase genes as well as the biochemical properties of four H. glycines endoglucanase enzymes. Two of the endoglucanases, HG-ENG-5 and HG-ENG-6, differed significantly in their amino acid sequence of the catalytic domains and their gene structure from that of the other four beta-1,4-endoglucanases. Quantitative real-time RT-PCR revealed distinct developmental expression differences among the hg-eng family members during the early stages of parasitism and relatively low expression levels in late parasitic stages, with the exception of the adult male stage for some eng genes. Recombinant HG-ENGs degraded carboxymethylcellulose and optimum enzyme activity ranged from pH 5.5 for HG-ENG-5 to pH 8 for HG-ENG-6. EDTA, Ca(2+), Co(2+), Mg(2+) and Fe(2+) did not affect enzyme activity of any ENG protein, whereas Zn(2+), Cu(2+) and Mn(2+) inhibited enzyme activity from 23% to 73% in some cases. In tests with 12 different polysaccharide substrates, enzyme activity was restricted to beta-1,4 linkages with all ENG proteins tested. Only HG-ENG-5 and HG-ENG-6 had relatively high activity on xylan and slightly degraded microcrystalline cellulose. Together, these data reveal distinct differences in expression and biochemistry of cyst nematode parasitism genes and proteins, respectively, and cast light on the intricate interactions between a parasitic animal and its plant host.
Collapse
Affiliation(s)
- Bingli Gao
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
9
|
Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M, Steenbakkers PJM, Akhmanova A, van der Drift C, Jetten MSM, Mowbray SL, Gilbert HJ, Op den Camp HJM. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:30-9. [PMID: 12850270 DOI: 10.1016/s0167-4781(03)00112-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic fungi possess high cellulolytic activities, which are organised in high molecular mass (HMM) complexes. Besides catalytic modules, the cellulolytic enzyme components of these complexes contain non-catalytic modules, known as dockerins, that play a key role in complex assembly. Screening of a genomic and a cDNA library of two Piromyces species resulted in the isolation of two clones containing inserts of 5.5 kb (Piromyces sp. E2) and 1.5 kb (Piromyces equi). Both clones contained the complete coding region of a glycoside hydrolase (GH) from family 6, consisting of a 20 amino acid signal peptide, a 76 (sp. E2)/81 (P. equi) amino acid stretch comprising two fungal non-catalytic docking domains (NCDDs), a 24 (sp. E2)/16 (P. equi) amino acid linker, and a 369 amino acid catalytic module. Homology modelling of the catalytic module strongly suggests that the Piromyces enzymes will be processive cellobiohydrolases. The catalytic residues and all nearby residues are conserved. The reaction is thus expected to proceed via a classical single-displacement (inverting) mechanism that is characteristic of this family of GHs. The enzyme, defined as Cel6A, encoded by the full-length Piromyces E2 sequence was expressed in Escherichia coli. The recombinant protein expressed had a molecular mass of 55 kDa and showed activity against Avicel, supporting the observed relationship of the sequence to those of known cellobiohydrolases. Affinity-purified cellulosomes of Piromyces sp. E2 were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. A major band was detected with the molecular weight of Cel6A. A tryptic fingerprint of this protein confirmed its identity.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cho KK, Kim SC, Woo JH, Bok JD, Choi YJ. Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb Technol 2000; 27:475-481. [PMID: 10978769 DOI: 10.1016/s0141-0229(00)00256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.
Collapse
Affiliation(s)
- KK Cho
- Laboratory of Dairy Science and Lactation Physiology, School of Agricultural Biotechnology, Seoul National University, 441-744, Suweon, South Korea
| | | | | | | | | |
Collapse
|
11
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
12
|
Eberhardt RY, Gilbert HJ, Hazlewood GP. Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):1999-2008. [PMID: 10931904 DOI: 10.1099/00221287-146-8-1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two endoglucanase cDNAs, designated cel5A and cel45A, were isolated from a cDNA library of the anaerobic fungus Piromyces equi. Sequence analysis revealed that cel5A has an open reading frame of 5142 bp and encodes a 1714 amino acid modular enzyme, Cel5A, with a molecular mass of 194847 Da. Cel5A consists of four catalytic domains homologous to family-5 glycosyl hydrolases, two C-terminal dockerins and one N-terminal dockerin. This is the first report of a complete gene containing tandem repeats of family-5 catalytic domains. The cDNA cel45A has an open reading frame of 1233 bp and encodes a 410 amino acid modular enzyme, Cel45A, with a molecular mass of 44380 Da. The catalytic domain, located at the C terminus, is homologous to the family-45 glycosyl hydrolases. Cel45A is the first family-45 enzyme to be described in an anaerobe. The presence of dockerins at the N and C termini of Cel5A and at the N terminus of Cel45A implies that both enzymes are part of the high-molecular-mass cellulose-degrading complex produced by Piromyces equi. The catalytic domain nearest the C terminus of Cel5A and the catalytic domain of Cel45A were hyperexpressed as thioredoxin fusion proteins, Trx-Cel5A' and Trx-Cel45A', and subjected to biochemical analysis. Trx-Cel5A' has a broad substrate range, showing activity against carboxymethylcellulose, acid-swollen cellulose, barley beta-glucan, lichenin, carob galactomannan, p-nitrophenyl beta-D-cellobiopyranoside and xylan. Trx-Cel45A' is active against carboxymethylcellulose, acid-swollen cellulose and the mixed linkage glucans, barley beta-glucan and lichenin.
Collapse
Affiliation(s)
- Ruth Y Eberhardt
- Laboratory of Molecular Enzymology, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK1
| | - Harry J Gilbert
- Department of Biological and Nutritional Sciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK2
| | - Geoffrey P Hazlewood
- Laboratory of Molecular Enzymology, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK1
| |
Collapse
|
13
|
Béra-Maillet C, Arthaud L, Abad P, Rosso MN. Biochemical characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot nematode Meloidogyne incognita. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3255-63. [PMID: 10824111 DOI: 10.1046/j.1432-1327.2000.01356.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A beta-1,4-endoglucanase named MI-ENG1, homologous to the family 5 glycoside hydrolases, was previously isolated from the plant parasitic root-knot nematode Meloidogyne incognita. We describe here the detection of the enzyme in the nematode homogenate and secretion and its complete biochemical characterization. This study is the first comparison of the enzymatic properties of an animal glycoside hydrolase with plant and microbial enzymes. MI-ENG1 shares many enzymatic properties with known endoglucanases from plants, free-living or rumen-associated microorganisms and phytopathogens. In spite of the presence of a cellulose-binding domain at the C-terminus, the ability of MI-ENG1 to bind cellulose could not be demonstrated, whatever the experimental conditions used. The biochemical characterization of the enzyme is a first step towards the understanding of the molecular events taking place during the plant-nematode interaction.
Collapse
Affiliation(s)
- C Béra-Maillet
- INRA, Unité Santé Végétale et Environnement, Antibes, France
| | | | | | | |
Collapse
|
14
|
Abstract
By combining analyses of G + C content and patterns of codon usage and constructing phylogenetic trees, we describe the gene transfer of an endoglucanase (celA) from the rumen bacteria Fibrobacter succinogenes to the rumen fungi Orpinomyces joyonii. The strong similarity between different glycosyl hydrolases of rumen fungi and bacteria suggests that most, if not all, of the glycosyl hydrolases of rumen fungi that play an important role in the degradation of cellulose and other plant polysaccharides were acquired by horizontal gene transfer events. This acquisition allows fungi to establish a habitat within a new environmental niche: the rumen of the herbivorous mammals for which cellulose and plant hemicellulose constitute the main raw nutritive substrate.
Collapse
Affiliation(s)
- S Garcia-Vallvé
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Catalonia, Spain
| | | | | |
Collapse
|
15
|
Lawrence J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 1999; 9:642-8. [PMID: 10607610 DOI: 10.1016/s0959-437x(99)00025-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Selfish Operon Model postulates that the organization of bacterial genes into operons is beneficial to the constituent genes in that proximity allows horizontal cotransfer of all genes required for a selectable phenotype; eukaryotic operons formed for very different reasons. Horizontal transfer of selfish operons most probably promotes bacterial diversification.
Collapse
Affiliation(s)
- J Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, USA. jlawrenc+@pitt.edu
| |
Collapse
|
16
|
Chen H, Li XL, Blum DL, Ljungdahl LG. Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiol Lett 1998; 159:63-8. [PMID: 9485595 DOI: 10.1111/j.1574-6968.1998.tb12842.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A cDNA designated celE cloned from Orpinomyces PC-2 consisted of an open reading frame encoding a polypeptide (CelE) of 477 amino acids. CelE was highly homologous to CelBs of Orpinomyces (72.3% identity) and neocallimastix (67.9% identity) and like them it had a non-catalytic repeated peptide domain (NCRPD) at the C-terminal end. The catalytic domain of CelE was homologous to glycosyl hydrolases of Family 5, found in several anaerobic bacteria. The gene of celE was devoid of introns. The recombinant proteins CelE and CelB of Orpinomyces PC-2 randomly hydrolyzed carboxymethylcellulose and cello-oligosaccharides in the pattern of endoglucanases. The results indicated that a gene of bacterial origin was duplicated to form celE and celB of Orpinomyces PC-2.
Collapse
Affiliation(s)
- H Chen
- Center for Biological Resource Recovery, University of Georgia, Athens 30602-7229, USA
| | | | | | | |
Collapse
|