1
|
Zhang DM, Lin YF. Functional modulation of sarcolemmal K ATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am J Physiol Cell Physiol 2020; 319:C194-C207. [PMID: 32432931 DOI: 10.1152/ajpcell.00409.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolic status to membrane excitability and are crucial for stress adaptation and cytoprotection in the heart. Atrial natriuretic peptide (ANP), a cardiac peptide important for cardiovascular homeostasis, also exhibits cytoprotective features including protection against myocardial ischemia-reperfusion injuries. However, how ANP modulates cardiac KATP channels is largely unknown. In the present study we sought to address this issue by investigating the role of ANP signaling in functional modulation of sarcolemmal KATP (sarcKATP) channels in ventricular myocytes freshly isolated from adult rabbit hearts. Single-channel recordings were performed in combination with pharmacological approaches in the cell-attached patch configuration. Bath application of ANP markedly potentiated sarcKATP channel activities induced by metabolic inhibition with sodium azide, whereas the KATP-stimulating effect of ANP was abrogated by selective inhibition of the natriuretic peptide receptor type A (NPR-A), cGMP-dependent protein kinase (PKG), reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK)1/2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), or the ryanodine receptor (RyR). Blockade of RyRs also nullified hydrogen peroxide (H2O2)-induced stimulation of sarcKATP channels in intact cells. Furthermore, single-channel kinetic analyses revealed that ANP enhanced the function of ventricular sarcKATP channels through destabilizing the long closures and facilitating the opening transitions, without affecting the single-channel conductance. In conclusion, here we report that ANP positively modulates the activity of ventricular sarcKATP channels via an intracellular signaling mechanism consisting of NPR-A, PKG, ROS, ERK1/2, CaMKII, and RyR2. This novel mechanism may regulate cardiac excitability and contribute to cytoprotection, in part, by opening myocardial KATP channels.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California, Davis, California.,Department of Anesthesiology and Pain Medicine, University of California, Davis, California
| |
Collapse
|
2
|
Imbrogno S, Filice M, Cerra MC. Exploring cardiac plasticity in teleost: the role of humoral modulation. Gen Comp Endocrinol 2019; 283:113236. [PMID: 31369729 DOI: 10.1016/j.ygcen.2019.113236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022]
Abstract
The fish heart represents an established natural model for evaluating basic mechanisms of the coordinated physiological reactions which maintain cardiac steady-state. This is due to its relatively simple design, but also to its multilevel morpho-functional flexibility which allows adequate responses to a variety of intrinsic (body size and shape, swimming performance, etc.), and extrinsic (temperature, salinity, oxygen level, water chemistry, etc.) factors related to the animal life style. Nowadays, although many gaps are still present, a huge literature is available about the mechanisms that fine-tune fish cardiac performance, particularly in relation to the influence exerted by substances possessing cardio-modulatory properties. Based on these premises, this review will provide an overview of the existing current knowledge regarding the humoral control of cardiac performance in fish. The role of both classic (i.e. catecholamines, angiotensin II and natriuretic peptides), and emerging cardioactive substances (i.e. the chromogranin-A-derived peptides vasostatins, catestatin and serpinin) will be illustrated and discussed. Moreover, an example of cardiomodulation elicited by peptides (e.g., nesfatin-1) associated to the regulation of feeding and metabolism will be provided. The picture will hopefully emphasize the complex circuits that sustain fish cardiac performance, also highliting the power of the teleost heart as an experimental model to deciphering mechanisms that could be difficult to explore in more elaborated cardiac morpho-functional designs.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Mariacristina Filice
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| |
Collapse
|
3
|
ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20092164. [PMID: 31052420 PMCID: PMC6539093 DOI: 10.3390/ijms20092164] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.
Collapse
|
4
|
Mazza R, Gattuso A, Filice M, Cantafio P, Cerra MC, Angelone T, Imbrogno S. Nesfatin-1 as a new positive inotrope in the goldfish (Carassius auratus) heart. Gen Comp Endocrinol 2015; 224:160-7. [PMID: 26248227 DOI: 10.1016/j.ygcen.2015.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
The hypothalamic neuropeptide Nesfatin-1 is present in both mammals and teleosts in which it elicits anorexigenic effects. In mammals, Nesfatin-1 acts on the heart by inducing negative inotropism and lusitropism, and cardioprotection against ischemic damages. We evaluated whether in teleosts, Nesfatin-1 also influences cardiac performance. In the goldfish (Carassius auratus), mature, fully processed Nesfatin-1 was detected in brain, gills, intestine and skeletal muscle, but not in the cardiac ventricle. However, on the isolated and perfused working goldfish heart, exogenous Nesfatin-1 induced a positive inotropic effect, revealed by a dose-dependent increase of stroke volume (SV) and stroke work (SW). Positive inotropism was abolished by inhibition of adenylate cyclase (AC; MDL123330A) and cAMP-dependent kinase (PKA; KT5720), suggesting a cAMP/PKA-mediated pathway. This was confirmed by the increased cAMP concentrations revealed by ELISA on Nesfatin-1-treated hearts. Perfusion with Diltiazem, Thapsigargin and PD98059 showed the involvement of L-type calcium channels, SERCA2a pumps and ERK1/2, respectively. The role of ERK1/2 and phospholamban in Nesfatin-1-induced cardiostimulation was supported by Western blotting analysis. In conclusion, this is the first report showing that in teleosts, Nesfatin-1 potentiates mechanical cardiac performance, strongly supporting the evolutionary importance of the peptide in the control of the cardiac function of vertebrates.
Collapse
Affiliation(s)
- R Mazza
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - A Gattuso
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - M Filice
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - P Cantafio
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - M C Cerra
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - T Angelone
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy
| | - S Imbrogno
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Arcavacata di Rende (CS), Italy.
| |
Collapse
|
5
|
Liu C, Xue R, Wu D, Wu L, Chen C, Tan W, Chen Y, Dong Y. REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem Biophys Res Commun 2014; 454:215-20. [PMID: 25450383 DOI: 10.1016/j.bbrc.2014.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is a major risk factor of cardiovascular morbidity and mortality. Autophagy is established to be involved in regulating cardiac hypertrophy. REDD1, a stress-responsive protein, is proved to contribute in autophagy induction. However, the role of REDD1 in cardiac hypertrophy remains unknown. Our study demonstrated that REDD1 knockdown by RNAi exacerbated phenylephrine (PE)-induced cardiac hypertrophy, manifested by increased hypertrophic markers such as ANP and cell surface area. In addition, we discovered that ERK1/2 signaling pathway was involved in the effect of REDD1 on hypertrophy. Moreover, our study showed that REDD1 knockdown impaired autophagy in hypertrophied cardiomyocytes. mTOR, a signaling molecule governing autophagy induction, was activated by the knockdown of REDD1 under PE stress. Importantly, the pro-hypertrophic effect of REDD1 knockdown was significantly reversed by the autophagy enhancer rapamycin. Taken together, we firstly prove that REDD1 is essential for inhibiting cardiac hypertrophy by enhancing autophagy.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Dexi Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Lingling Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Cong Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Weiping Tan
- Department of Respiratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yili Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China.
| |
Collapse
|
6
|
Yu X, Jia B, Wang F, Lv X, Peng X, Wang Y, Li H, Wang Y, Lu D, Wang H. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway. J Cell Mol Med 2014; 18:263-73. [PMID: 24304472 PMCID: PMC3930413 DOI: 10.1111/jcmm.12184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/08/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Baoyin Jia
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Faqiang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Xuemei Peng
- Department of Anesthesiology, The First Affiliated Hospital, Jinan UniversityGuangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Yanping Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
- *Correspondence to: Prof. Huadong WANG, M.D., Ph.D., Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China., Tel.: 86-20-85220241, Fax: 86-20-85221343, E-mail:
| |
Collapse
|
7
|
p90 ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to G(q)-protein-coupled receptor stimuli, endothelin-1 and α(1)-adrenergic receptor agonists. Biochem J 2013; 450:351-63. [PMID: 23215897 PMCID: PMC3573779 DOI: 10.1042/bj20121371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the Gq-protein-coupled receptor agonists endothelin-1, phenylephrine (a generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2–3 min of stimulation (endothelin-1>A61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased the nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of the 213 RNAs up-regulated after 1 h, 51% required RSKs for their up-regulation, whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical with, endothelin-1. As with endothelin-1, PD184352 inhibited the up-regulation of most phenylephrine-responsive transcripts, but the greater variation in the effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, up-regulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq-protein-coupled receptor stimulation.
Collapse
|
8
|
Angelone T, Filice E, Pasqua T, Amodio N, Galluccio M, Montesanti G, Quintieri AM, Cerra MC. Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci 2013; 70:495-509. [PMID: 22955491 PMCID: PMC11113865 DOI: 10.1007/s00018-012-1138-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/26/2012] [Accepted: 08/13/2012] [Indexed: 11/25/2022]
Abstract
Nesfatin-1 is an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide. It controls feeding behavior, water intake, and glucose homeostasis. If intracerebrally administered, it induces hypertension, thus suggesting a role in central cardiovascular control. However, it is not known whether it is able to directly control heart performance. We aimed to verify the hypothesis that, as in the case of other hypothalamic satiety peptides, Nesfatin-1 acts as a peripheral cardiac modulator. By western blotting and QT-PCR, we identified the presence of both Nesfatin-1 protein and NUCB2 mRNA in rat cardiac extracts. On isolated and Langendorff-perfused rat heart preparations, we found that exogenous Nesfatin-1 depresses contractility and relaxation without affecting coronary motility. These effects did not involve Nitric oxide, but recruited the particulate guanylate cyclase (pGC) known as natriuretic peptide receptor A (NPR-A), protein kinase G (PKG) and extracellular signal-regulated kinases1/2 (ERK1/2). Co-immunoprecipitation and bioinformatic analyses supported an interaction between Nesfatin-1 and NPR-A. Lastly, we preliminarily observed, through post-conditioning experiments, that Nesfatin-1 protects against ischemia/reperfusion (I/R) injury by reducing infarct size, lactate dehydrogenase release, and postischemic contracture. This protection involves multiple prosurvival kinases such as PKCε, ERK1/2, signal transducer and activator of transcription 3, and mitochondrial K(ATP) channels. It also ameliorates contractility recovery. Our data indicate that: (1) the heart expresses Nesfatin-1, (2) Nesfatin-1 directly affects myocardial performance, possibly involving pGC-linked NPR-A, the pGC/PKG pathway, and ERK1/2, (3) the peptide protects the heart against I/R injury. Results pave the way to include Nesfatin-1 in the neuroendocrine modulators of the cardiac function, also encouraging the clarification of its clinical potential in the presence of nutrition-dependent physio-pathologic cardiovascular diseases.
Collapse
Affiliation(s)
- T. Angelone
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - E. Filice
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - T. Pasqua
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - N. Amodio
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - M. Galluccio
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - G. Montesanti
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - A. M. Quintieri
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| | - M. C. Cerra
- Laboratory of Cardiovascular Physiology, Department of Pharmaco-Biology, University of Calabria, 87030 Arcavacata di Rende, CS Italy
| |
Collapse
|
9
|
Zhang Y, Chen G, Zhong S, Zheng F, Gao F, Chen Y, Huang Z, Cai W, Li W, Liu X, Zheng Y, Xu H, Shi G. N-n-butyl haloperidol iodide ameliorates cardiomyocytes hypoxia/reoxygenation injury by extracellular calcium-dependent and -independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:912310. [PMID: 24392181 PMCID: PMC3857550 DOI: 10.1155/2013/912310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/28/2013] [Accepted: 09/28/2013] [Indexed: 02/05/2023]
Abstract
N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ERK1/2-related pathways. In extracellularcalcium-containing hypoxia/reoxygenation cardiomyocytes, PKCα and ERK1/2 were activated, Egr-1 protein level and cTnI leakage increased, and cell viability decreased. The ERK1/2 inhibitors suppressed extracellular-calcium-containing-hypoxia/reoxygenation-induced Egr-1 overexpression and cardiomyocytes injury. PKCα inhibitor downregulated extracellularcalcium-containing-hypoxia/reoxygenation-induced increase in p-ERK1/2 and Egr-1 expression. F2 downregulated hypoxia/reoxygenation-induced elevation of p-PKCα, p-ERK1/2, and Egr-1 expression and inhibited cardiomyocytes damage. The ERK1/2 and PKCα activators antagonized F2's effects. In extracellular-calcium-free-hypoxia/reoxygenation cardiomyocytes, ERK1/2 was activated, LDH and cTnI leakage increased, and cell viability decreased. F2 and ERK1/2 inhibitors antagonized extracellular-calcium-free-hypoxia/reoxygenation-induced ERK1/2 activation and suppressed cardiomyocytes damage. The ERK1/2 activator antagonized F2's above effects. F2 had no effect on cardiomyocyte cAMP content or PKA and Egr-1 expression. Altogether, ERK activation in extracellular-calcium-containing and extracellular-calcium-free hypoxia/reoxygenation leads to cardiomyocytes damage. F2 may ameliorate cardiomyocytes hypoxia/reoxygenation injury by regulating the extracellular-calcium-dependent PKCα/ERK1/2/Egr-1 pathway and through the extracellular-calcium-independent ERK1/2 activation independently of the cAMP/PKA pathway or Egr-1 overexpression.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Gaoyong Chen
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fuchun Zheng
- Department of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Weiqiu Li
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xingping Liu
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Yanshan Zheng
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041 Guangdong, China
- Department of Cardiovascular Diseases, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
- *Ganggang Shi:
| |
Collapse
|
10
|
Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC, Angelone T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem 2012; 24:1221-31. [PMID: 23266283 DOI: 10.1016/j.jnutbio.2012.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
A moderate red wine consumption and a colored fruit-rich diet protect the cardiovascular system, thanks to the presence of several polyphenols. Malvidin-3-0-glucoside (malvidin), an anthocyanidine belonging to polyphenols, is highly present in red grape skin and red wine. Its biological activity is poorly characterized, although a role in tumor cell inhibition has been found. To analyze whether and to which extent, like other food-derived polyphenols, malvidin affects the cardiovascular function, in this study, we have performed a quantitative analysis by high-performance liquid chromatography of polyphenolic content of red grape skins extract, showing that it contains a high malvidin amount (63.93 ±12.50 mg/g of fresh grape skin). By using the isolated and Langendorff perfused rat heart, we found that the increasing doses (1-1000 ng/ml) of the extract induced positive inotropic and negative lusitropic effects associated with coronary dilation. On the same cardiac preparations, we observed that malvidin (10(-10)-10(-6) mol/L) elicited negative inotropism and lusitropism and coronary dilation. Analysis of mechanism of action revealed that malvidin-dependent cardiac effects require the activation of the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO)/cGMP/PKG pathway and are associated with increased intracellular cGMP and the phosphorylation of endothelial NO synthase (eNOS), PI3K-AKT, ERK1/2, and GSK-3β. AKT and eNOS phosphorylation was confirmed in human umbilical vein endothelial cell. We also found that malvidin act as a postconditioning agent, being able to elicit cardioprotection against ischemia/reperfusion damages. Our results show the cardioactivity of polyphenols-rich red grape extracts and indicate malvidin as a new cardioprotective principle. This is of relevance not only for a better clarification of the beneficial cardiovascular effects of food-derived polyphenols but also for nutraceutical research.
Collapse
Affiliation(s)
- Anna Maria Quintieri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T, Braun T, Althoff T, Offermanns S, Wettschureck N. G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation 2012; 126:1972-82. [PMID: 22972902 DOI: 10.1161/circulationaha.112.109256] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cardiac remodeling in response to pressure or volume overload plays an important role in the pathogenesis of heart failure. Various mechanisms have been suggested to translate mechanical stress into structural changes, one of them being the release of humoral factors such as angiotensin II and endothelin-1, which in turn promote cardiac hypertrophy and fibrosis. A large body of evidence suggests that the prohypertrophic effects of these factors are mediated by receptors coupled to the G(q/11) family of heterotrimeric G proteins. Most G(q/11)-coupled receptors, however, can also activate G proteins of the G(12/13) family, but the role of G(12/13) in cardiac remodeling is not understood. METHODS AND RESULTS We use siRNA-mediated knockdown in vitro and conditional gene inactivation in vivo to study the role of the G(12/13) family in pressure overload-induced cardiac remodeling. We show in detail that inducible cardiomyocyte-specific inactivation of the α subunit of G(13), Gα(13), does not affect basal heart function but protects mice from pressure overload-induced hypertrophy and fibrosis as efficiently as inactivation of Gα(q/11). Furthermore, inactivation of Gα(13) prevents the development of heart failure up to 1 year after overloading. On the molecular level, we show that Gα(13), but not Gα(q/11), controls agonist-induced expression of hypertrophy-specific genes through activation of the small GTPase RhoA and consecutive activation of myocardin-related transcription factors. CONCLUSION Our data show that the G(12/13) family of heterotrimeric G proteins is centrally involved in pressure overload-induced cardiac remodeling and plays a central role in the transition to heart failure.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Angelone T, Filice E, Quintieri AM, Imbrogno S, Amodio N, Pasqua T, Pellegrino D, Mulè F, Cerra MC. Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart. Nutr Metab Cardiovasc Dis 2012; 22:486-494. [PMID: 21186112 DOI: 10.1016/j.numecd.2010.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. METHODS AND RESULTS GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfused hearts and by Western blotting and enzyme-linked immunosorbent assay (ELISA) on ventricular extracts. By immunoblotting and Q-RT-PCR, we revealed the expression of ventricular GLP-2 receptors. Perfusion analyses showed that GLP-2 induces positive inotropism at low concentration (10-12 mol l(-1)), and negative inotropism and lusitropism from 10 to 10 mol l(-1). It dose-dependently constricts coronaries. The negative effects of GLP-2 were independent from GLP-1 receptors, being unaffected by exendin-3 (9-39) amide. GLP-2-dependent negative action involves Gi/o proteins, associates with a reduction of intracellular cyclic adenosine monophosphate (cAMP), an increase in extracellular signal regulated kinases 1 and 2 (ERK1/2) and a decrease in phospholamban phosphorylation, but is independent from endothelial nitric oxide synthase (eNOS) and protein kinase G (PKG). Finally, GLP-2 competitively antagonised β-adrenergic stimulation. CONCLUSIONS For the first time, to our knowledge, we found that: (1) the rat heart expresses functional GLP-2 receptors; (2) GLP-2 acts on both myocardium and coronaries, negatively modulating both basal and β-adrenergic stimulated cardiac performance; and (3) GLP-2 effects are mediated by G-proteins and involve ERK1/2.
Collapse
Affiliation(s)
- T Angelone
- Department of Cell Biology, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, Garratt AN, Birchmeier C, Zhou M, Hartley L, Robb L, Feneley MP, Fatkin D, Harvey RP. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res 2010; 107:715-27. [PMID: 20651287 DOI: 10.1161/circresaha.110.218693] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide. OBJECTIVE To understand the role of Nrg1 in heart development through analysis of null and hypomorphic Nrg1 mutant mice. METHODS AND RESULTS Chamber domains were correctly specified in Nrg1 mutants, although chamber-restricted genes Hand1 and Cited1 failed to be activated. The chamber GRN subsequently decayed with individual genes exhibiting decay patterns unrelated to known patterning boundaries. Both trabecular and nontrabecular myocardium were affected. Network demise was spatiotemporally dynamic, the most sensitive region being the central part of the left ventricle, in which the GRN underwent complete collapse. Other regions were partially affected with graded sensitivity. In vitro, Nrg1 promoted phospho-Erk1/2-dependent transcription factor expression, cardiomyocyte maturation and cell cycle inhibition. We monitored cardiac pErk1/2 in embryos and found that expression was Nrg1-dependent and levels correlated with cardiac GRN sensitivity in mutants. CONCLUSIONS The chamber GRN is fundamentally labile and dependent on signaling from extracardiac sources. Nrg1-ErbB1/4-Erk1/2 signaling critically sustains elements of the GRN in trabecular and nontrabecular myocardium, challenging our understanding of Nrg1 function. Transcriptional decay patterns induced by reduced Nrg1 suggest a novel mechanism for cardiac transcriptional regulation and dysfunction in disease, potentially linking biomechanical feedback to molecular pathways for growth and differentiation.
Collapse
Affiliation(s)
- Donna Lai
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reinking BE, Wedemeyer EW, Weiss RM, Segar JL, Scholz TD. Cardiomyopathy in offspring of diabetic rats is associated with activation of the MAPK and apoptotic pathways. Cardiovasc Diabetol 2009; 8:43. [PMID: 19646268 PMCID: PMC2731081 DOI: 10.1186/1475-2840-8-43] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/31/2009] [Indexed: 11/10/2022] Open
Abstract
Background Maternal diabetes affects the developing fetal cardiovascular system. Newborn offspring of diabetic mothers can have a transient cardiomyopathy. We hypothesized that cardiomyopathic remodeling is associated with activation of the mitogen activated protein kinase (MAPK) signaling and apoptotic pathways. Methods To evaluate the effects of moderate and severe maternal hyperglycemia, pregnant rats were made diabetic with an injection of 50 mg/kg of streptozotocin. Moderately well controlled maternal diabetes was achieved with twice daily glucose checks and insulin injections. No insulin was given to severely diabetic dams. Offspring of moderate and severe diabetic mothers (OMDM and MSDM, respectively) were studied on postnatal days 1 (NB1) and 21 (NB21). Echocardiograms were performed to evaluate left ventricular (LV) dimensions and function. Myocardial MAPK and apoptotic protein levels were measured by Western blot. Results OMDM had increased cardiac mass at NB1 compared to controls that normalized at NB21. OSDM demonstrated microsomia with relative sparing of cardiac mass and a dilated cardiomyopathy at NB1. In both models, there was a persistent increase in the HW:BW and significant activation of MAPK and apoptotic pathways at NB21. Conclusion The degree of maternal hyperglycemia determines the type of cardiomyopathy seen in the offspring, while resolution of both the hypertrophic and dilated cardiomyopathies is associated with activation of MAPK signaling and apoptotic pathways.
Collapse
Affiliation(s)
- Benjamin E Reinking
- Departments of Pediatrics and Internal Medicine, University of Iowa, Iowa City, IA USA 52242-1083, USA.
| | | | | | | | | |
Collapse
|
15
|
Peng T, Zhang T, Lu X, Feng Q. JNK1/c-fos inhibits cardiomyocyte TNF- expression via a negative crosstalk with ERK and p38 MAPK in endotoxaemia. Cardiovasc Res 2008; 81:733-41. [DOI: 10.1093/cvr/cvn336] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Abstract
Mitogen-activated protein (MAP) kinases belong to a highly conserved family of Ser-Thr protein kinases in the human kinome and have diverse roles in broad physiological functions. The 4 best-characterized MAP kinase pathways, ERK1/2, JNK, p38, and ERK5, have been implicated in different aspects of cardiac regulation, from development to pathological remodeling. Recent advancements in the development of kinase-specific inhibitors and genetically engineered animal models have revealed significant new insights about MAP kinase pathways in the heart. However, this explosive body of new information also has yielded many controversies about the functional role of specific MAP kinases as either detrimental promoters or critical protectors of the heart during cardiac pathological processes. These uncertainties have raised questions on whether/how MAP kinases can be targeted to develop effective therapies against heart diseases. In this review, recent studies examining the role of MAP kinase subfamilies in cardiac development, hypertrophy, and survival are summarized.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Lambert PJ, Shahrier AZ, Whitman AG, Dyson OF, Reber AJ, McCubrey JA, Akula SM. Targeting the PI3K and MAPK pathways to treat Kaposi's-sarcoma-associated herpes virus infection and pathogenesis. Expert Opin Ther Targets 2007; 11:589-99. [PMID: 17465719 DOI: 10.1517/14728222.11.5.589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cells require the ability to appropriately respond to signals in their extracellular environment. To initiate, inhibit and control these processes, the cell has developed a complex network of signaling cascades. The phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways regulate several responses including mitosis, apoptosis, motility, proliferation, differentiation and many others. It is not surprising, therefore, that many viruses target the PI3K and MAPK pathways as a means to manipulate cellular function. Recently, Kaposi's sarcoma-associated herpes virus (KSHV) has been added to the list. KSHV manipulates the PI3K and MAPK pathways to control such divergent processes as cell survival, cellular migration, immune responses, and to control its own reactivation and lytic replication. Manipulation of the PI3K and MAPK pathways also plays a role in malignant transformation. Here, the authors review the potential to target the PI3K and MAPK signaling pathways to inhibit KSHV infection and pathogenesis.
Collapse
Affiliation(s)
- Phelps J Lambert
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27834, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Over the last decade, the Rho family GTPases have gained considerable recognition as powerful regulators of actin cytoskeletal organization. As with many high profile signal transducers, these molecules soon attracted the attention of the cardiovascular research community. Shortly thereafter, two prominent members known as RhoA and Rac1 were linked to agonist-induced gene expression and myofilament organization using the isolated cardiomyocyte cell model. Subsequent creation of transgenic mouse lines provided evidence for more complex roles of RhoA and Rac1 signaling. Clues from in vitro and in vivo studies suggest the involvement of numerous downstream targets of RhoA and Rac1 signaling including serum response factor, NF-kappaB, and other transcription factors, myofilament proteins, ion channels, and reactive oxygen species generation. Which of these contribute to the observed phenotypic effects of enhanced RhoA and Rac activation in vivo remain to be determined. Current research efforts with a more translational focus have used statins or Rho kinase blockers to assess RhoA and Rac1 as targets for interventional approaches to blunt hypertrophy or heart failure. Generally, salutary effects on remodeling and ischemic damage are observed, but the broad specificity and multiple cellular targets for these drugs within the myocardium demands caution in interpretation. In this review, we assess the evolution of knowledge related to Rac1 and RhoA in the context of hypertrophy and heart failure and highlight the direction that future exploration will lead.
Collapse
Affiliation(s)
- Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, USA
| | | | | |
Collapse
|