1
|
Ferreira RS, Assis RIF, Racca F, Bontempi AC, da Silva RA, Wiench M, Andia DC. Analyzes In Silico Indicate the lncRNAs MIR31HG and LINC00939 as Possible Epigenetic Inhibitors of the Osteogenic Differentiation in PDLCs. Genes (Basel) 2023; 14:1649. [PMID: 37628700 PMCID: PMC10454380 DOI: 10.3390/genes14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs.
Collapse
Affiliation(s)
- Rogério S. Ferreira
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rahyza I. F. Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória 29043-910, ES, Brazil
| | - Francesca Racca
- Periodontology Department, The Ohio State University College of Dentistry, Columbus, OH 43210-1267, USA;
| | - Ana Carolina Bontempi
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rodrigo A. da Silva
- Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil;
| | - Malgorzata Wiench
- School of Dentistry, Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Denise C. Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| |
Collapse
|
2
|
Souza AT, Bezerra BL, Oliveira FS, Freitas GP, Bighetti Trevisan RL, Oliveira PT, Rosa AL, Beloti MM. Effect of bone morphogenetic protein 9 on osteoblast differentiation of cells grown on titanium with nanotopography. J Cell Biochem 2018; 119:8441-8449. [DOI: 10.1002/jcb.27060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alann T.P. Souza
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Barbara L.S. Bezerra
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Fabiola S. Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Gileade P. Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Rayana L. Bighetti Trevisan
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Paulo T. Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Adalberto L. Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| | - Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
| |
Collapse
|
3
|
Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B, Golas MM. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 2017; 26:997-1011. [PMID: 28218430 DOI: 10.1002/pro.3142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/15/2023]
Abstract
In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.
Collapse
Affiliation(s)
- Ken Inui
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zongpei Zhao
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juan Yuan
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Le T M Le
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
4
|
Ghosh LD, Ravi V, Sanpui P, Sundaresan NR, Chatterjee K. Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids Surf B Biointerfaces 2016; 151:178-188. [PMID: 28012406 DOI: 10.1016/j.colsurfb.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
The objective of this work was to develop a simple surface modification technique using keratin derived from human hair for efficient cardiomyogenic lineage commitment of human mesenchymal stem cells (hMSCs). Keratin was extracted from discarded human hair containing both the acidic and basic components along with the heterodimers. The extracted keratin was adsorbed to conventional tissue culture polystyrene surfaces at different concentration. Keratin solution of 500μg/ml yielded a well coated layer of 12±1nm thickness with minimal agglomeration. The keratin coated surfaces promoted cell attachment and proliferation. Large increases in the mRNA expression of known cardiomyocyte genes such as cardiac actinin, cardiac troponin and β-myosin heavy chain were observed. Immunostaining revealed increased expression of sarcomeric α-actinin and tropomyosin whereas Western blots confirmed higher expression of tropomyosin and myocyte enhancer factor 2C in cells on the keratin coated surface than on the non-coated surface. Keratin promoted DNA demethylation of the Atp2a2 and Nkx2.5 genes thereby elucidating the importance of epigenetic changes as a possible molecular mechanism underlying the increased differentiation. A global gene expression analysis revealed a significant alteration in the expression of genes involved in pathways associated in cardiomyogenic commitment including cytokine and chemokine signaling, cell-cell and cell-matrix interactions, Wnt signaling, MAPK signaling, TGF-β signaling and FGF signaling pathways among others. Thus, adsorption of keratin offers a facile and affordable yet potent route for inducing cardiomyogenic lineage commitment of stem cells with important implications in developing xeno-free strategies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Pallab Sanpui
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India.
| |
Collapse
|
5
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Scott RE, Ghule PN, Stein JL, Stein GS. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis. J Cell Physiol 2015; 230:2533-42. [PMID: 25808367 PMCID: PMC4481160 DOI: 10.1002/jcp.24990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e(-13) to e(-36) . Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability.
Collapse
Affiliation(s)
- RE Scott
- Varigenix, Inc., Memphis, Tennessee
| | - PN Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - JL Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - GS Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
7
|
Ha SW, Jang HL, Nam KT, Beck GR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015; 65:32-42. [PMID: 26141836 DOI: 10.1016/j.biomaterials.2015.06.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10 × 100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials.
Collapse
Affiliation(s)
- Shin-Woo Ha
- Department of Medicine, Division of Endocrinology Metabolism and Lipids, Emory University, Atlanta, GA 30322, United States
| | - Hae Lin Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Department of Medicine, Division of Endocrinology Metabolism and Lipids, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
8
|
Meyer MB, Benkusky NA, Pike JW. The RUNX2 cistrome in osteoblasts: characterization, down-regulation following differentiation, and relationship to gene expression. J Biol Chem 2014; 289:16016-31. [PMID: 24764292 PMCID: PMC4047377 DOI: 10.1074/jbc.m114.552216] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Indexed: 01/09/2023] Open
Abstract
RUNX2 is a transcription factor that is first expressed in early osteoblast-lineage cells and represents a primary determinant of osteoblastogenesis. While numerous target genes are regulated by RUNX2, little is known of sites on the genome occupied by RUNX2 or of the gene networks that are controlled by these sites. To explore this, we conducted a genome-wide analysis of the RUNX2 cistrome in both pre-osteoblastic MC3T3-E1 cells (POB) and their mature osteoblast progeny (OB), characterized the two cistromes and assessed their relationship to changes in gene expression. We found that although RUNX2 was widely bound to the genome in POB cells, this binding profile was reduced upon differentiation to OBs. Numerous sites were lost upon differentiation, new sites were also gained; many sites remained common to both cell states. Additional features were identified as well including location relative to potential target genes, abundance with respect to single genes, the frequent presence of a consensus TGTGGT RUNX2 binding motif, co-occupancy by C/EBPβ and the presence of a typical epigenetic histone enhancer signature. This signature was changed quantitatively following differentiation. While RUNX2 binding sites were associated extensively with adjacent genes, the distal nature of the majority of these sites prevented assessment of whether they represented direct targets of RUNX2 action. Changes in gene expression, however, revealed an abundance of genes that contained RUNX2 binding sites and were regulated in concert. These studies establish a basis for further analysis of the role of RUNX2 activity and its function during osteoblast lineage maturation.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
9
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
10
|
Pandian GN, Sugiyama H. Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals (Basel) 2012; 6:1-24. [PMID: 24275784 PMCID: PMC3816674 DOI: 10.3390/ph6010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023] Open
Abstract
Natural epigenetic processes precisely orchestrate the intricate gene network by expressing and suppressing genes at the right place and time, thereby playing an essential role in maintaining the cellular homeostasis. Environment-mediated alteration of this natural epigenomic pattern causes abnormal cell behavior and shifts the cell from the normal to a diseased state, leading to certain cancers and neurodegenerative disorders. Unlike heritable diseases that are caused by the irreversible mutations in DNA, epigenetic errors can be reversed. Inheritance of epigenetic memory is also a major concern in the clinical translation of the Nobel Prize-winning discovery of induced pluripotent stem cell technology. Consequently, there is an increasing interest in the development of novel epigenetic switch-based therapeutic strategies that could potentially restore the heritable changes in epigenetically inherited disorders. Here we give a comprehensive overview of epigenetic inheritance and suggest the prospects of therapeutic gene modulation using epigenetic-based drugs, in particular histone deacetylase inhibitors. This review suggests that there is a need to develop therapeutic strategies that effectively mimic the natural environment and include the ways to modulate the gene expression at both the genetic and epigenetic levels. The development of tailor-made small molecules that could epigenetically alter DNA in a sequence-specific manner is a promising approach for restoring defects in an altered epigenome and may offer a sustainable solution to some unresolved clinical issues.
Collapse
Affiliation(s)
- Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | |
Collapse
|
11
|
Lu H, Cui JY, Gunewardena S, Yoo B, Zhong XB, Klaassen CD. Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA-sequencing. Epigenetics 2012; 7:914-29. [PMID: 22772165 DOI: 10.4161/epi.21113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental regulation of gene expression is controlled by distinct epigenetic signatures catalyzed by various epigenetic modifiers. Little is known about the ontogeny and tissue distribution of these epigenetic modifiers. In the present study, we used a novel approach of RNA-sequencing to elucidate hepatic ontogeny and tissue distribution of mRNA expression of 142 epigenetic modifiers, including enzymes involved in DNA methylation/demethylation, histone acetylation/deacetylation, histone methylation/demethylation, histone phosphorylation and chromosome remodeling factors in male C57BL/6 mice. Livers from male C57BL/6 mice were collected at 12 ages from prenatal to adulthood. Many of these epigenetic modifiers were expressed at much higher levels in perinatal livers than adult livers, such as Dnmt1, Dnmt3a, Dnmt3b, Apobec3, Kat1, Ncoa4, Setd8, Ash2l, Dot1l, Cbx1, Cbx3, Cbx5, Cbx6, Ezh2, Suz12, Eed, Suv39h1, Suv420h2, Dek, Hdac1, Hdac2, Hdac7, Kdm2b, Kdm5c, Kdm7, Prmt1-5, Prmt7, Smarca4, Smarcb1, Chd4 and Ino80e. In contrast, hepatic mRNA expression of a few epigenetic modifiers increased during postnatal liver development, such as Smarca2, Kdm1b, Cbx7 and Chd3. In adult mice (60 d of age), most epigenetic modifiers were expressed at moderately (1-3-fold) higher levels in kidney and/or small intestine than liver. In conclusion, this study, for the first time, unveils developmental changes in mRNA abundance of all major known epigenetic modifiers in mouse liver. These data suggest that ontogenic changes in mRNA expression of epigenetic modifiers may play important roles in determining the addition and/or removal of corresponding epigenetic signatures during liver development.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Rivera-Gonzalez GC, Droop AP, Rippon HJ, Tiemann K, Pellacani D, Georgopoulos LJ, Maitland NJ. Retinoic acid and androgen receptors combine to achieve tissue specific control of human prostatic transglutaminase expression: a novel regulatory network with broader significance. Nucleic Acids Res 2012; 40:4825-40. [PMID: 22362749 PMCID: PMC3367184 DOI: 10.1093/nar/gks143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 12/01/2022] Open
Abstract
In the human prostate, expression of prostate-specific genes is known to be directly regulated by the androgen-induced stimulation of the androgen receptor (AR). However, less is known about the expression control of the prostate-restricted TGM4 (hTGP) gene. In the present study we demonstrate that the regulation of the hTGP gene depends mainly on retinoic acid (RA). We provide evidence that the retinoic acid receptor gamma (RAR-G) plays a major role in the regulation of the hTGP gene and that presence of the AR, but not its transcriptional transactivation activity, is critical for hTGP transcription. RA and androgen responsive elements (RARE and ARE) were mapped to the hTGP promoter by chromatin immunoprecipitation (ChIP), which also indicated that the active ARE and RARE sites were adjacent, suggesting that the antagonistic effect of androgen and RA is related to the relative position of binding sites. Publicly available AR and RAR ChIP-seq data was used to find gene potentially regulated by AR and RAR. Four of these genes (CDCA7L, CDK6, BTG1 and SAMD3) were tested for RAR and AR binding and two of them (CDCA7L and CDK6) proved to be antagonistically regulated by androgens and RA confirming that this regulation is not particular of hTGP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norman J. Maitland
- Department of Biology, Yorkshire Cancer Research Unit, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
13
|
Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 2012; 9:6-22. [PMID: 22972441 DOI: 10.1900/rds.2012.9.6] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Faced with a global epidemic of type 2 diabetes (T2D), it is critical that researchers improve our understanding of the pathogenesis of T2D and related vascular complications. These findings may ultimately lead to novel treatment options for disease prevention or delaying progression. Two major paradigms jointly underlie the development of T2D and related coronary artery disease, diabetic nephropathy, and diabetic retinopathy. These paradigms include the genetic risk variants and behavioral/environmental factors. This article systematically reviews the literature supporting genetic determinants in the pathogenesis of T2D and diabetic vasculopathy, and the functional implications of these gene variants on the regulation of beta-cell function and glucose homeostasis. We update the discovery of diabetes and diabetic vasculopathy risk variants, and describe the genetic technologies that have uncovered them. Also, genomic linkage between obesity and T2D is discussed. There is a complementary role for behavioral and environmental factors modulating the genetic susceptibility and diabetes risk. Epidemiological and clinical data demonstrating the effects of behavioral and novel environmental exposures on disease expression are reviewed. Finally, a succinct overview of recent landmark clinical trials addressing glycemic control and its impact on rates of vascular complications is presented. It is expected that novel strategies to exploit the gene- and exposure-related underpinnings of T2D will soon result.
Collapse
Affiliation(s)
- Mariana Murea
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | |
Collapse
|
14
|
Fürst RW, Meyer HHD, Schweizer G, Ulbrich SE. Is DNA methylation an epigenetic contribution to transcriptional regulation of the bovine endometrium during the estrous cycle and early pregnancy? Mol Cell Endocrinol 2012; 348:67-77. [PMID: 21802491 DOI: 10.1016/j.mce.2011.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022]
Abstract
Epigenetic events controlling the transcriptional regulation of genes involved in endometrial function during the estrous cycle and early pregnancy have only sparsely been investigated. We analyzed the gene expression of DNA methyltransferases and the most prominent endocrine transcriptional mediator estrogen receptor alpha (ESR1) in the bovine endometrium of heifers at 0, 12 and 18 days following estrous and at day 18 after insemination. The luminometric methylation assay for the investigation of global DNA methylation and an elegant combination of methylation-sensitive high resolution melting and pyrosequencing for local methylation levels of ESR1 were deployed. In spite of differential gene expression of ESR1 among groups, no differences in endometrial ESR1 DNA methylation during neither estrous cycle nor early pregnancy were determined. Global DNA methylation prevailed at similar low levels in endometrium, likely controlled by the observed moderate DNMT3b expression. Thus, the epigenetic contribution of DNA methylation influencing endometrial function seems rather limited. However, because a control tissue expressing only minute amounts of ESR1 transcripts was locally significantly higher methylated, DNA methylation might contribute to an appropriate tissue-specific expression status underlying further specific control mechanisms of gene transcription.
Collapse
Affiliation(s)
- Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
15
|
A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 2011; 108:9863-8. [PMID: 21628588 DOI: 10.1073/pnas.1018493108] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217, miR-218, and miR-338) is expressed in a lineage-related pattern in mesenchymal cell types. During both osteogenic and chondrogenic differentiation, these miRNAs, in general, are inversely expressed relative to Runx2. Based on 3'UTR luciferase reporter, immunoblot, and mRNA stability assays, each miRNA directly attenuates Runx2 protein accumulation. Runx2-targeting miRNAs differentially inhibit Runx2 protein expression in osteoblasts and chondrocytes and display different efficacies. Thus, cellular context contributes to miRNA-mediated regulation of Runx2. All Runx2-targeting miRNAs (except miR-218) significantly impede osteoblast differentiation, and their effects can be reversed by the corresponding anti-miRNAs. These findings demonstrate that osteoblastogenesis is limited by an elaborate network of functionally tested miRNAs that directly target the osteogenic master regulator Runx2.
Collapse
|
16
|
Stein GS, Stein JL, Van Wijnen AJ, Lian JB, Montecino M, Croce CM, Choi JY, Ali SA, Pande S, Hassan MQ, Zaidi SK, Young DW. Transcription factor-mediated epigenetic regulation of cell growth and phenotype for biological control and cancer. ACTA ACUST UNITED AC 2009; 50:160-7. [PMID: 19896493 DOI: 10.1016/j.advenzreg.2009.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heng HHQ, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 2009; 220:538-47. [PMID: 19441078 DOI: 10.1002/jcp.21799] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic and epigenetic heterogeneity (the main form of non-genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the "noise" of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non-coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini-review, we have briefly analyzed a number of mis-conceptions regarding cancer heterogeneity, followed by the re-evaluation of cancer heterogeneity within a framework of the genome-centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|