1
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Villaman C, Pollastri G, Saez M, Martin AJ. Benefiting from the intrinsic role of epigenetics to predict patterns of CTCF binding. Comput Struct Biotechnol J 2023; 21:3024-3031. [PMID: 37266407 PMCID: PMC10229758 DOI: 10.1016/j.csbj.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Motivation One of the most relevant mechanisms involved in the determination of chromatin structure is the formation of structural loops that are also related with the conservation of chromatin states. Many of these loops are stabilized by CCCTC-binding factor (CTCF) proteins at their base. Despite the relevance of chromatin structure and the key role of CTCF, the role of the epigenetic factors that are involved in the regulation of CTCF binding, and thus, in the formation of structural loops in the chromatin, is not thoroughly understood. Results Here we describe a CTCF binding predictor based on Random Forest that employs different epigenetic data and genomic features. Importantly, given the ability of Random Forests to determine the relevance of features for the prediction, our approach also shows how the different types of descriptors impact the binding of CTCF, confirming previous knowledge on the relevance of chromatin accessibility and DNA methylation, but demonstrating the effect of epigenetic modifications on the activity of CTCF. We compared our approach against other predictors and found improved performance in terms of areas under PR and ROC curves (PRAUC-ROCAUC), outperforming current state-of-the-art methods.
Collapse
Affiliation(s)
- Camilo Villaman
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | | | - Mauricio Saez
- Centro de Oncología de Precisión, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Chile
| | - Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Wu J, Zhang L, Song Q, Yu L, Wang S, Zhang B, Wang W, Xia P, Chen X, Xiao Y, Xu C. Systematical identification of cell-specificity of CTCF-gene binding based on epigenetic modifications. Brief Bioinform 2020; 22:589-600. [PMID: 32022856 DOI: 10.1093/bib/bbaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.
Collapse
Affiliation(s)
- Jie Wu
- Bioinformatics at Harbin Medical University, China
| | - Li Zhang
- Bioinformatics at Harbin Medical University, China
| | - Qian Song
- Bioinformatics at Harbin Medical University, China
| | - Lei Yu
- Bioinformatics at Harbin Medical University, China
| | - Shuyuan Wang
- Bioinformatics at Harbin Medical University, China
| | - Bo Zhang
- Bioinformatics at Harbin Medical University, China
| | - Weida Wang
- Bioinformatics at Harbin Medical University, China
| | - Peng Xia
- Bioinformatics at Harbin Medical University, China
| | - Xiaowen Chen
- Bioinformatics at Harbin Medical University, China
| | - Yun Xiao
- Bioinformatics at Harbin Medical University, China
| | - Chaohan Xu
- Bioinformatics at Harbin Medical University, China
| |
Collapse
|
4
|
Hilmi K, Jangal M, Marques M, Zhao T, Saad A, Zhang C, Luo VM, Syme A, Rejon C, Yu Z, Krum A, Fabian MR, Richard S, Alaoui-Jamali M, Orthwein A, McCaffrey L, Witcher M. CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. SCIENCE ADVANCES 2017; 3:e1601898. [PMID: 28560323 PMCID: PMC5443639 DOI: 10.1126/sciadv.1601898] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/29/2017] [Indexed: 05/06/2023]
Abstract
The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for the multifunctional protein CCCTC-binding factor (CTCF) in facilitating HR-mediated DSB repair. CTCF is recruited to DSB through its zinc finger domain independently of poly(ADP-ribose) polymers, known as PARylation, catalyzed by poly(ADP-ribose) polymerase 1 (PARP-1). CTCF ensures proper DSB repair kinetics in response to γ-irradiation, and the loss of CTCF compromises HR-mediated repair. Consistent with its role in HR, loss of CTCF results in hypersensitivity to DNA damage, inducing agents and inhibitors of PARP. Mechanistically, CTCF acts downstream of BRCA1 in the HR pathway and associates with BRCA2 in a PARylation-dependent manner, enhancing BRCA2 recruitment to DSB. In contrast, CTCF does not influence the recruitment of the NHEJ protein 53BP1 or LIGIV to DSB. Together, our findings establish for the first time that CTCF is an important regulator of the HR pathway.
Collapse
Affiliation(s)
- Khalid Hilmi
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Maïka Jangal
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Maud Marques
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Tiejun Zhao
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Amine Saad
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Chenxi Zhang
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Vincent M. Luo
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Alasdair Syme
- Department of Radiation Oncology, Medical Physics Unit, Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Carlis Rejon
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, Quebec H3A 1A3, Canada
| | - Zhenbao Yu
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Asiev Krum
- Department of Radiation Oncology, Medical Physics Unit, Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Marc R. Fabian
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Stéphane Richard
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Moulay Alaoui-Jamali
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Alexander Orthwein
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Luke McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, Quebec H3A 1A3, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Corresponding author.
| |
Collapse
|
5
|
Ayala-Ortega E, Arzate-Mejía R, Pérez-Molina R, González-Buendía E, Meier K, Guerrero G, Recillas-Targa F. Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer 2016; 16:226. [PMID: 26983574 PMCID: PMC4794844 DOI: 10.1186/s12885-016-2273-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. Methods To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. Results We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. Conclusion Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2273-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erandi Ayala-Ortega
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rodrigo Arzate-Mejía
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosario Pérez-Molina
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edgar González-Buendía
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Karin Meier
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Georgina Guerrero
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
6
|
Victoria-Acosta G, Vazquez-Santillan K, Jimenez-Hernandez L, Muñoz-Galindo L, Maldonado V, Martinez-Ruiz GU, Melendez-Zajgla J. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding. Sci Rep 2015; 5:14838. [PMID: 26443201 PMCID: PMC4595840 DOI: 10.1038/srep14838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding.
Collapse
Affiliation(s)
- Georgina Victoria-Acosta
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| | | | - Luis Jimenez-Hernandez
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Laura Muñoz-Galindo
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Gustavo Ulises Martinez-Ruiz
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico.,Unit of Investigative Research on Oncological Disease, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| |
Collapse
|
7
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
8
|
Wang D, Li C, Zhang X. The promoter methylation status and mRNA expression levels of CTCF and SIRT6 in sporadic breast cancer. DNA Cell Biol 2014; 33:581-90. [PMID: 24842653 DOI: 10.1089/dna.2013.2257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Promoter hypermethylation causes gene silencing and is thought to be an early event in carcinogenesis. This study was to detect promoter methylation status and mRNA expression levels of CCCTC-binding factor (CTCF) and sirtuin 6 (SIRT6), and to explore the relationship between methylation and mRNA expression in breast cancer patient samples. Promoter methylation analysis and expression profile analysis of two genes were performed by methylation-specific PCR, bisulfite sequencing PCR, and quantitative real-time PCR in cancer lesions and matched normal tissues. The promoter region of CTCF has not been hypermethylated in all patient samples. In contrast, methylation of SIRT6 gene was present in invasive cancers (93.5%) and matched normal tissues (96.8%) from 62 patients. Promoter hypermethylation of SIRT6 was also observed in ductal carcinoma in situ (three of three) and matched normal tissues (two of three). mRNA expression of CTCF and SIRT6 in invasive tumors showed a lower level than that in paired normal tissues (p=0.008 and p=0.030, respectively). The fold change values of CTCF expression were significantly lower in invasive ductal cancer lesions with Ki-67-positive status (p=0.042). In conclusion, our data showed that the methylation status of CTCF and SIRT6 promoter regions was not statistically different in cancer lesions compared with matched normal tissues. No significant association between promoter methylation status and expression profiles of CTCF and SIRT6 was found in invasive breast cancers.
Collapse
Affiliation(s)
- Da Wang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, China
| | | | | |
Collapse
|
9
|
Liu Q, Yang B, Xie X, Wei L, Liu W, Yang W, Ge Y, Zhu Q, Zhang J, Jiang L, Yu X, Shen W, Li R, Shi X, Li B, Qin Y. Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J 2014; 281:2713-25. [PMID: 24725430 DOI: 10.1111/febs.12816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
CCCTC-binding factor (CTCF), a highly conserved zinc finger protein, is a master organizer of genome spatial organization and has multiple functions in gene regulation. Mounting evidence indicates that CTCF regulates the imprinted genes Igf2 and H19 by organizing chromatin at the Igf2/H19 locus, although the mechanism by which CTCF carries out this function is not fully understood. By yeast two-hybrid screening, we identified vigilin, a multi-KH-domain protein, as a new partner of CTCF. Subsequent coimmunoprecipitation and glutathione S-transferase pulldown experiments confirmed that vigilin interacts with CTCF. Moreover, vigilin is present at several known CTCF target sites, such as the promoter regions of c-myc and BRCA1, the locus control region of β-globin, and several regions within the Igf2/H19 locus. In vivo depletion of vigilin did not affect CTCF binding; however, knockdown of CTCF reduced vigilin binding to the H19 imprinting control region. Furthermore, ectopic expression of vigilin significantly downregulated Igf2 and upregulated H19, whereas depletion of vigilin upregulated Igf2 and downregulated H19, in HepG2, CNE1 and HeLa cells. These results reveal the functional relevance of vigilin and CTCF, and show that the CTCF-vigilin complex contributes to regulation of Igf2/H19.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hoivik EA, Kusonmano K, Halle MK, Berg A, Wik E, Werner HMJ, Petersen K, Oyan AM, Kalland KH, Krakstad C, Trovik J, Widschwendter M, Salvesen HB. Hypomethylation of the CTCFL/BORIS promoter and aberrant expression during endometrial cancer progression suggests a role as an Epi-driver gene. Oncotarget 2014; 5:1052-61. [PMID: 24658009 PMCID: PMC4011582 DOI: 10.18632/oncotarget.1697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/26/2014] [Indexed: 12/11/2022] Open
Abstract
Cancers arise through accumulating genetic and epigenetic alterations, considered relevant for phenotype and approaches to targeting new therapies. We investigated a unique collection of endometrial cancer precursor samples and clinically annotated primary and metastatic lesions for two evolutionary and functionally related transcription factors, CCCTC-binding factor (zinc finger protein) (CTCF) and its paralogue CTCF-like factor, also denoted Brother of the Regulator of Imprinted Sites (CTCFL/BORIS). CTCF, a chromatin modeling- and transcription factor, is normally expressed in a ubiquitous fashion, while CTCFL/BORIS is restricted to the testis. In cancer, CTCF is thought to be a tumor suppressor, while CTCFL/BORIS has been suggested as an oncogene. CTCF mutations were identified in 13%, with CTCF hotspot frameshift mutations at p.T204, all observed solely in the endometrioid subtype, but with no association with outcome. Interestingly, CTCFL/BORIS was amongst the top ranked genes differentially expressed between endometrioid and non-endometrioid tumors, and increasing mRNA level of CTCFL/BORIS was highly significantly associated with poor survival. As aberrant CTCFL/BORIS expression might relate to loss of methylation, we explored methylation status in clinical samples from complex atypical hyperplasia, through primary tumors to metastatic lesions, demonstrating a pattern of DNA methylation loss during disease development and progression in line with the increase in CTCFL/BORIS mRNA expression observed. Thus, CTCF and CTCFL/BORIS are found to diverge in the different subtypes of endometrial cancer, with CTCFL/BORIS activation through demethylation from precursors to metastatic lesions. We thus propose, CTCFL/BORIS as an Epi-driver gene in endometrial cancer, suggesting a potential for future vaccine development.
Collapse
Affiliation(s)
- Erling A. Hoivik
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kanthida Kusonmano
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Computational Biology Unit, University of Bergen, Norway
| | - Mari K. Halle
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Berg
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Henrica M. J. Werner
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, University of Bergen, Norway
| | - Anne M. Oyan
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jone Trovik
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Martin Widschwendter
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, University College London, United Kingdom
| | - Helga B. Salvesen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Recillas-Targa F. Interdependency between genetic and epigenetic regulatory defects in cancer. Methods Mol Biol 2014; 1165:33-52. [PMID: 24839017 DOI: 10.1007/978-1-4939-0856-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epigenetic regulation is understood as heritable changes in gene expression and genome function that can occur without affecting the DNA sequence. In its in vivo context DNA is coupled to a group of small basic proteins that together with the DNA form the chromatin. The organization and regulation of the chromatin alliance with multiple nuclear functions are inconceivable without genetic information. With the advance on the understanding of the chromatin organization of the eukaryotic genome, it has been clear that not only genetics but also epigenetics influence both normal human biology and diseases. As a consequence, the basic concepts and mechanisms of cancer need to be readdressed and viewed not only locally but also at the whole genome scale or even, in the three-dimensional context of the cell nucleus space. Such a vision has a larger impact than has been previously predicted, since phenomena like aging, senescence, the entail of nutrition, stem cell biology, and cancer are orchestrated by epigenetic and genetic processes. Here I describe the relevance and central role of genetic and epigenetic defects in cancer.
Collapse
Affiliation(s)
- Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, 04510, D.F, México,
| |
Collapse
|
12
|
Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 2013; 288:26067-26077. [PMID: 23884423 DOI: 10.1074/jbc.m113.486175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CCCTC-binding factor (CTCF) is a ubiquitously expressed "master weaver" and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation, and high-order chromatin organization. It has been shown that CTCF facilitates the recruitment of the upstream binding factor onto ribosomal DNA (rDNA) and regulates the local epigenetic state of rDNA repeats. However, the mechanism by which CTCF modulates rRNA gene transcription has not been well understood. Here we found that wild-type CTCF augments the pre-rRNA level, cell size, and cell growth in cervical cancer cells. In contrast, RNA interference-mediated knockdown of CTCF reduced pre-rRNA transcription. CTCF positively regulates rRNA gene transcription in a RNA polymerase I-dependent manner. We identified an RRGR motif as a putative nucleolar localization sequence in the C-terminal region of CTCF that is required for activating rRNA gene transcription. Using mass spectrometry, we identified SMC2 and SMC4, two subunits of condensin complexes that interact with CTCF. Condensin negatively regulates CTCF-mediated rRNA gene transcription. Knockdown of SMC2 expression significantly facilitates the loading of CTCF and the upstream binding factor onto the rDNA locus and increases histone acetylation across the rDNA locus. Taken together, our study suggests that condensin competes with CTCF in binding to a specific rDNA locus and negatively regulates CTCF-mediated rRNA gene transcription.
Collapse
Affiliation(s)
- Kaimeng Huang
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Jinping Jia
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wu
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingze Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Min Li
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingji Jin
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Cizhong Jiang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Cai
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Duanqing Pei
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangjin Pan
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| | - Hongjie Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| |
Collapse
|
13
|
Valdes-Quezada C, Arriaga-Canon C, Fonseca-Guzmán Y, Guerrero G, Recillas-Targa F. CTCF demarcates chicken embryonic α-globin gene autonomous silencing and contributes to adult stage-specific gene expression. Epigenetics 2013; 8:827-38. [PMID: 23880533 DOI: 10.4161/epi.25472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic loci composed of more than one gene are frequently subjected to differential gene expression, with the chicken α-globin domain being a clear example. In the present study we aim to understand the globin switching mechanisms responsible for the epigenetic silencing of the embryonic π gene and the transcriptional activation of the adult α(D) and α(A) genes at the genomic domain level. In early stages, we describe a physical contact between the embryonic π gene and the distal 3' enhancer that is lost later during development. We show that such a level of regulation is achieved through the establishment of a DNA hypermethylation sub-domain that includes the embryonic gene and the adjacent genomic sequences. The multifunctional CCCTCC-binding factor (CTCF), which is located upstream of the α(D) gene promoter, delimits this sub-domain and creates a transition between the inactive sub-domain and the active sub-domain, which includes the adult α(D) gene. In avian-transformed erythroblast HD3 cells that are induced to differentiate, we found active DNA demethylation of the adult α(D) promoter, coincident with the incorporation of 5-hydroxymethylcytosine (5hmC) and concomitant with adult gene transcriptional activation. These results suggest that autonomous silencing of the embryonic π gene is needed to facilitate an optimal topological conformation of the domain. This model proposes that CTCF is contributing to a specific chromatin configuration that is necessary for differential α-globin gene expression during development.
Collapse
Affiliation(s)
- Christian Valdes-Quezada
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México D.F., México
| | | | | | | | | |
Collapse
|
14
|
Tommasi S, Zheng A, Weninger A, Bates SE, Li XA, Wu X, Hollstein M, Besaratinia A. Mammalian cells acquire epigenetic hallmarks of human cancer during immortalization. Nucleic Acids Res 2012; 41:182-95. [PMID: 23143272 PMCID: PMC3592471 DOI: 10.1093/nar/gks1051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Progression to malignancy requires that cells overcome senescence and switch to an immortal phenotype. Thus, exploring the genetic and epigenetic changes that occur during senescence/immortalization may help elucidate crucial events that lead to cell transformation. In the present study, we have globally profiled DNA methylation in relation to gene expression in primary, senescent and immortalized mouse embryonic fibroblasts. Using a high-resolution genome-wide mapping technique, followed by extensive locus-specific validation assays, we have identified 24 CpG islands that display significantly higher levels of CpG methylation in immortalized cell lines as compared to primary murine fibroblasts. Several of these hypermethylated CpG islands are associated with genes involved in the MEK–ERK pathway, one of the most frequently disrupted pathways in cancer. Approximately half of the hypermethylated targets are developmental regulators, and bind to the repressive Polycomb group (PcG) proteins, often in the context of bivalent chromatin in mouse embryonic stem cells. Because PcG-associated aberrant DNA methylation is a hallmark of several human malignancies, our methylation data suggest that epigenetic reprogramming of pluripotency genes may initiate cell immortalization. Consistent with methylome alterations, global gene expression analysis reveals that the vast majority of genes dysregulated during cell immortalization belongs to gene families that converge into the MEK–ERK pathway. Additionally, several dysregulated members of the MAP kinase network show concomitant hypermethylation of CpG islands. Unlocking alternative epigenetic routes for cell immortalization will be paramount for understanding crucial events leading to cell transformation. Unlike genetic alterations, epigenetic changes are reversible events, and as such, can be amenable to pharmacological interventions, which makes them appealing targets for cancer therapy when genetic approaches prove inadequate.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Saito Y, Saito H. Role of CTCF in the regulation of microRNA expression. Front Genet 2012; 3:186. [PMID: 23056006 PMCID: PMC3457075 DOI: 10.3389/fgene.2012.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/03/2012] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression of various target genes. miRNAs are expressed in a tissue-specific manner and play important roles in cell proliferation, apoptosis, and differentiation. Epigenetic alterations such as DNA methylation and histone modification are essential for chromatin remodeling and regulation of gene expression including miRNAs. The CCCTC-binding factor, CTCF, is known to bind insulators and exhibits an enhancer-blocking and barrier function, and more recently, it also contributes to the three-dimensional organization of the genome. CTCF can also serve as a barrier against the spread of DNA methylation and histone repressive marks over promoter regions of tumor suppressor genes. Recent studies have shown that CTCF is also involved in the regulation of miRNAs such as miR-125b1, miR-375, and the miR-290 cluster in cancer cells and stem cells. miR-125b1 is a candidate of tumor suppressor and is silenced in breast cancer cells. On the other hand, miR-375 may have oncogenic function and is overexpressed in breast cancer cells. CTCF is involved in the regulation of both miR-125b1 and miR-375, indicating that there are various patterns of CTCF-associated epigenetic regulation of miRNAs. CTCF may also play a key role in the pluripotency of cells through the regulation of miR-290 cluster. These observations suggest that CTCF-mediated regulation of miRNAs could be a novel approach for cancer therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University Tokyo, Japan
| | | |
Collapse
|
16
|
Hernández-Hernández A, Soto-Reyes E, Ortiz R, Arriaga-Canon C, Echeverría-Martinez OM, Vázquez-Nin GH, Recillas-Targa F. Changes of the nucleolus architecture in absence of the nuclear factor CTCF. Cytogenet Genome Res 2012; 136:89-96. [PMID: 22286186 DOI: 10.1159/000335752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 01/24/2023] Open
Abstract
CTCF is a multifunctional nuclear factor involved in many cellular processes like gene regulation, chromatin insulation and genomic organization. Recently, CTCF has been shown to be involved in the transcriptional regulation of ribosomal genes and nucleolar organization in Drosophila cells and different murine cell types, including embryonic stem cells. Moreover, it has been suggested that CTCF could be associated to the nucleolus of human erythroleukemic K562 cells. In the present work, we took advantage of efficient small hairpin RNA interference against human CTCF to analyze nucleolar organization in HeLa cells. We have found that key components of the nucleolar architecture are altered. As a consequence of such alterations, an upregulation of ribosomal gene transcription was observed. We propose that CTCF contributes to the structural organization of the nucleolus and, through epigenetic mechanisms, to the regulation of the ribosomal gene expression.
Collapse
Affiliation(s)
- A Hernández-Hernández
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, México
| | | | | | | | | | | | | |
Collapse
|
17
|
Soto-Reyes E, González-Barrios R, Cisneros-Soberanis F, Herrera-Goepfert R, Pérez V, Cantú D, Prada D, Castro C, Recillas-Targa F, Herrera LA. Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer 2012; 12:40. [PMID: 22277129 PMCID: PMC3297514 DOI: 10.1186/1471-2407-12-40] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In cancer cells, transcriptional gene silencing has been associated with genetic and epigenetic defects. The disruption of DNA methylation patterns and covalent histone marks has been associated with cancer development. Until recently, microRNA (miRNA) gene silencing was not well understood. In particular, miR-125b1 has been suggested to be an miRNA with tumor suppressor activity, and it has been shown to be deregulated in various human cancers. In the present study, we evaluated the DNA methylation at the CpG island proximal to the transcription start site of miR-125b1 in cancer cell lines as well as in normal tissues and gynecological tumor samples. In addition, we analyzed the association of CTCF and covalent histone modifications at the miR-125b1 locus. METHODS To assess the DNA methylation status of the miR-125b1, genomic DNA was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. The miR-125b1 gene expression was analyzed by qRT-PCR using U6 as a control for constitutive gene expression. CTCF repressive histone marks abundance was evaluated by chromatin immunoprecipitation assays. RESULTS The disruption of CTCF in breast cancer cells correlated with the incorporation of repressive histone marks such H3K9me3 and H3K27me3 as well as with aberrant DNA methylation patterns. To determine the effect of DNA methylation at the CpG island of miR-125b1 on the expression of this gene, we performed a qRT-PCR assay. We observed a significant reduction on the expression of miR-125b1 in cancer cells in comparison with controls, suggesting that DNA methylation at the CpG island might reduce miR-125b1 expression. These effects were observed in other gynecological cancers, including ovarian and cervical tumors. CONCLUSIONS A reduction of miR-125b1 expression in cancers, correlated with methylation, repressive histone marks and loss of CTCF binding at the promoter region.
Collapse
Affiliation(s)
- Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Universidad Nacional Autónoma de México (UNAM), México, DF, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|