Liu Y, Porta A, Peng X, Gengaro K, Cunningham EB, Li H, Dominguez LA, Bellido T, Christakos S. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k.
J Bone Miner Res 2004;
19:479-90. [PMID:
15040837 DOI:
10.1359/jbmr.0301242]
[Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/14/2003] [Accepted: 10/30/2003] [Indexed: 01/02/2023]
Abstract
UNLABELLED
This study show for the first time that calbindin-D28k can prevent glucocorticoid-induced bone cell death. The anti-apoptotic effect of calbindin-D28k involves inhibition of glucocorticoid induced caspase 3 activation as well as ERK activation.
INTRODUCTION
Recent studies have indicated that deleterious effects of glucocorticoids on bone involve increased apoptosis of osteocytes and osteoblasts. Because the calcium-binding protein calbindin-D28k has been reported to be anti-apoptotic in different cell types and in response to a variety of insults, we investigated whether calbindin-D28k could protect against glucocorticoid-induced cell death in bone cells.
MATERIALS AND METHODS
Apoptosis was induced by addition of dexamethasone (dex; 10-6 M) for 6 h to MLO-Y4 osteocytic cells as well as to osteoblastic cells. Apoptosis percentage was determined by examining the nuclear morphology of transfected cells. Caspase 3 activity was evaluated in bone cells and in vitro. SELDI mass spectrometry (MS) was used to examine calbindin-D28k-caspase 3 interaction. Phosphorylation of calbindin-D28k was examined by 32P incorporation as well as by MALDI-TOF MS. ERK activation was determined by Western blot.
RESULTS
The pro-apoptotic effect of dex in MLO-Y4 cells was completely inhibited in cells transfected with calbindin-D28k cDNA (5.6% apoptosis in calbindin-D28k transfected cells compared with 16.2% apoptosis in vector-transfected cells, p < 0.05). Similar results were observed in osteoblastic cells. We found that dex-induced apoptosis in bone cells was accompanied by an increase in caspase 3 activity. This increase in caspase 3 activity was inhibited in the presence of calbindin-D28k. In vitro assays indicated a concentration-dependent inhibition of caspase 3 by calbindin-D28k (Ki = 0.22 microM). Calbindin-D28k was found to inhibit caspase 3 specifically because the activity of other caspases was unaffected by calbindin-D28k. The anti-apoptotic effect of calbindin-D28k in response to dex was also reproducibly associated with an increase in the phosphorylation of ERK 1 and 2, suggesting that calbindin-D28k affects more than one signal in the glucocorticoid-induced apoptotic pathway.
CONCLUSION
Calbindin-D28k, a natural non-oncogenic protein, could be an important target in the therapeutic intervention of glucocorticoid-induced osteoporosis.
Collapse