1
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
2
|
Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome. G3-GENES GENOMES GENETICS 2018; 8:1711-1720. [PMID: 29563186 PMCID: PMC5940162 DOI: 10.1534/g3.117.300405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ∼8% of chromosomal genes and ∼4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome.
Collapse
|
3
|
Burgetz IJ, Shariff S, Pang A, Tillier* ERM. Positional Homology in Bacterial Genomes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In comparative genomic studies, syntenic groups of homologous sequence in the same order have been used as supplementary information that can be used in helping to determine the orthology of the compared sequences. The assumption is that orthologous gene copies are more likely to share the same genome positions and share the same gene neighbors. In this study we have defined positional homologs as those that also have homologous neighboring genes and we investigated the usefulness of this distinction for bacterial comparative genomics. We considered the identification of positionaly homologous gene pairs in bacterial genomes using protein and DNA sequence level alignments and found that the positional homologs had on average relatively lower rates of substitution at the DNA level (synonymous substitutions) than duplicate homologs in different genomic locations, regardless of the level of protein sequence divergence (measured with non-synonymous substitution rate). Since gene order conservation can indicate accuracy of orthology assignments, we also considered the effect of imposing certain alignment quality requirements on the sensitivity and specificity of identification of protein pairs by BLAST and FASTA when neighboring information is not available and in comparisons where gene order is not conserved. We found that the addition of a stringency filter based on the second best hits was an efficient way to remove dubious ortholog identifications in BLAST and FASTA analyses. Gene order conservation and DNA sequence homology are useful to consider in comparative genomic studies as they may indicate different orthology assignments than protein sequence homology alone.
Collapse
Affiliation(s)
- Ingrid J. Burgetz
- Dept. of Medical Biophysics Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Salimah Shariff
- Dept. of Medical Biophysics Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Andy Pang
- Dept. of Medical Biophysics Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol Mol Biol Rev 2017; 81:e00019-17. [PMID: 28794225 PMCID: PMC5584315 DOI: 10.1128/mmbr.00019-17] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella, Vibrio, and Burkholderia. The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N2 -fixing symbiotic genome. Environ Microbiol 2016; 18:2534-47. [PMID: 26768651 DOI: 10.1111/1462-2920.13221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
6
|
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 2014; 10:e1004742. [PMID: 25340565 PMCID: PMC4207669 DOI: 10.1371/journal.pgen.1004742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023] Open
Abstract
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). Rhizobia are free-living bacteria of agricultural and environmental importance that form root-nodules on leguminous plants and provide these plants with fixed nitrogen. Many of the rhizobia have a multipartite genome, as do several plant and animal pathogens. All isolates of the alfalfa symbiont, Sinorhizobium meliloti, carry three large replicons, the chromosome (∼3.7 Mb), pSymA megaplasmid (∼1.4 Mb), and pSymB chromid (∼1.7 Mb). To gain insight into the role and evolutionary history of these replicons, we have ‘reversed evolution’ by constructing a S. meliloti strain consisting solely of the chromosome and lacking the pSymB chromid and pSymA megaplasmid. As the resulting strain was viable, we could perform a detailed phenotypic analysis and these data provided significant insight into the biology and metabolism of S. meliloti. The data lend direct experimental evidence in understanding the evolution and role of the multipartite genome. Specifically the large secondary replicons increase the organism's niche range, and this advantage offsets the metabolic burden of these replicons on the cell. Additionally, the single-chromosome strain offers a useful platform to facilitate future forward genetic approaches to understanding and manipulating the symbiosis and plant-microbe interactions.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol 2014; 22:147-56. [DOI: 10.1016/j.tim.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
|
8
|
The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 2012; 195:202-12. [PMID: 23123907 DOI: 10.1128/jb.01758-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.
Collapse
|
9
|
Djedidi S, Yokoyama T, Ohkama-Ohtsu N, Risal CP, Abdelly C, Sekimoto H. Stress tolerance and symbiotic and phylogenic features of root nodule bacteria associated with Medicago species in different bioclimatic regions of Tunisia. Microbes Environ 2011; 26:36-45. [PMID: 21487201 DOI: 10.1264/jsme2.me10138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thirty two rhizobial isolates were obtained from different bioclimatic regions of Tunisia using as trap plants, Medicago sativa, Medicago ciliaris, Medicago polymorpha and Medicago minima. To study their diversity and characterize them in relation to Mediterranean conditions, abiotic stress resistance, symbiotic properties and genetic diversity in terms of 16S rRNA and nodA sequences were assessed. Five isolates from M. sativa, three from M. ciliaris and three from M. minima could grow at 45°C. Only two isolates from M. sativa grew at 4% NaCl. The most stress tolerant isolates were obtained from arid soils. A phylogenetic analysis of 16S rRNA genes revealed 29 isolates to be closely related to Ensifer including one (Pl.3-9) that showed a 16S rRNA sequence similar to that of Ensifer meliloti and nodA sequence similar to that of Ensifer medicae. However, three isolates were categorized into Agrobacterium containing the nodA of Ensifer. Furthermore, these isolates developed nodules on original hosts. The results for the four isolates suggest horizontal gene transfer between the species.
Collapse
Affiliation(s)
- Salem Djedidi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Guo H, Sun S, Eardly B, Finan T, Xu J. Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti. Genome 2010; 52:862-75. [PMID: 19935910 DOI: 10.1139/g09-060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differences in genome size and gene content are among the most important signatures of microbial adaptation and genome evolution. Here, we investigated the patterns of genome variation among 10 natural strains of the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti, using pulse field gel electrophoresis (PFGE) and whole-genome microarray hybridizations. Our PFGE analysis showed a genome size range of 6.45-7.01 Mbp, with the greatest variation arising from the pSymA replicon, followed by pSymB; no size difference was evident among the chromosomes. Consistent with this pattern of size differences, 41.2% of open reading frames (ORFs) on pSymA were variably absent/present, followed by 12.7% on pSymB and 3.7% on the chromosome. However, the ORFs that were variably duplicated were more evenly distributed among the three replicons: 11.0%, 16.5%, and 15.3% of ORFs on pSymA, pSymB, and the chromosome, respectively. Among the 10 strains, the percentage of ORFs that were absent ranged from 1.51% to 6.35%, and the percentage of ORFs that were duplicated ranged from 0.27% to 8.56%. Our analyses showed that host plants, geographic origins, multilocus enzyme electrophoretic types, and replicon sizes had little influence on the distribution patterns of absent or duplicated ORFs. The proportions of ORFs that were either variably absent/present or variably duplicated differed greatly among the functional categories, for each of the three replicons as well as for the whole genome. Interestingly, we observed positive correlations among the three replicons in the number of absent ORFs as well as the number of duplicated ORFs, consistent with coordinated gene gains and losses in this important bacterium in nature.
Collapse
Affiliation(s)
- Hong Guo
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
11
|
Symbiont genomics, our new tangled bank. Genomics 2010; 95:129-37. [PMID: 20053372 DOI: 10.1016/j.ygeno.2009.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 12/24/2022]
Abstract
Microbial symbionts inhabit the soma and surfaces of most multicellular species and instigate both beneficial and harmful infections. Despite their ubiquity, we are only beginning to resolve major patterns of symbiont ecology and evolution. Here, we summarize the history, current progress, and projected future of the study of microbial symbiont evolution throughout the tree of life. We focus on the recent surge of data that whole-genome sequencing has introduced into the field, in particular the links that are now being made between symbiotic lifestyle and molecular evolution. Post-genomic and systems biology approaches are also emerging as powerful techniques to investigate host-microbe interactions, both at the molecular level of the species interface and at the global scale. In parallel, next-generation sequencing technologies are allowing new questions to be addressed by providing access to population genomic data, as well as the much larger genomes of microbial eukaryotic symbionts and hosts. Throughout we describe the questions that these techniques are tackling and we conclude by listing a series of unanswered questions in microbial symbiosis that can potentially be addressed with the new technologies.
Collapse
|
12
|
Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst Appl Microbiol 2009; 32:583-92. [DOI: 10.1016/j.syapm.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/18/2009] [Accepted: 07/10/2009] [Indexed: 11/16/2022]
|
13
|
Wdowiak-Wróbel S, Małek W. Following phylogenetic tracks of Astragalus cicer microsymbionts. Antonie van Leeuwenhoek 2009; 97:21-34. [DOI: 10.1007/s10482-009-9384-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/30/2009] [Indexed: 12/01/2022]
|
14
|
Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW. Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 2009; 191:2501-11. [PMID: 19251847 PMCID: PMC2668409 DOI: 10.1128/jb.01779-08] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/10/2009] [Indexed: 12/23/2022] Open
Abstract
The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.
Collapse
Affiliation(s)
- Steven C Slater
- Virginia Bioinformatics Institute, Washington St., MC 0477, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Rhizobial bacteria colonize legume roots for the purpose of biological nitrogen fixation. A complex series of events, coordinated by host and bacterial signal molecules, underlie the development of this symbiotic interaction. Rhizobia elicit de novo formation of a novel root organ within which they establish a chronic intracellular infection. Legumes permit rhizobia to invade these root tissues while exerting control over the infection process. Once rhizobia gain intracellular access to their host, legumes also strongly influence the process of bacterial differentiation that is required for nitrogen fixation. Even so, symbiotic rhizobia play an active role in promoting their goal of host invasion and chronic persistence by producing a variety of signal molecules that elicit changes in host gene expression. In particular, rhizobia appear to advocate for their access to the host by producing a variety of signal molecules capable of suppressing a general pathogen defense response.
Collapse
Affiliation(s)
- Katherine E. Gibson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
16
|
Guo X, Flores M, Morales L, García D, Bustos P, González V, Palacios R, Dávila G. DNA diversification in two Sinorhizobium species. J Bacteriol 2007; 189:6474-6. [PMID: 17601787 PMCID: PMC1951916 DOI: 10.1128/jb.00384-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The comparative analysis of genomic characteristics and single-nucleotide polymorphism patterns from large fragments borne on different replicons of Sinorhizobium spp. genomes clearly demonstrate that DNA recombination among closely related bacteria is a major event in the diversification of this genome, especially in pSymA, resulting in mosaic structure.
Collapse
Affiliation(s)
- Xianwu Guo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vriezen JAC, de Bruijn FJ, Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 2007; 73:3451-9. [PMID: 17400779 PMCID: PMC1932662 DOI: 10.1128/aem.02991-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jan A C Vriezen
- Plant Research Laboratory-DOE, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
18
|
Sun S, Guo H, Xu J. Multiple gene genealogical analyses reveal both common and distinct population genetic patterns among replicons in the nitrogen-fixing bacterium Sinorhizobium meliloti. MICROBIOLOGY-SGM 2007; 152:3245-3259. [PMID: 17074896 DOI: 10.1099/mic.0.29170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinorhizobium meliloti is a Gram-negative alpha-proteobacterium that can form symbiotic relationships with alfalfa and fix atmospheric nitrogen. The complete genome of a laboratory strain, Rm1021, was published in 2001, and the genome of this strain is arranged in three replicons: a chromosome of 3.65 million base pairs (Mb), and two megaplasmids, pSymA (1.35 Mb) and pSymB (1.68 Mb). However, the potential difference in genetic variation among the three replicons in natural strains remains poorly understood. In this study, a total of 16 gene fragments were sequenced, four from pSymA and six each from the chromosome and pSymB, for 49 natural S. meliloti strains. The analyses identified significant differences in divergence among genes, with the mean Hasegawa-Kishino-Yano-1985 (HKY85) distance ranging from 0.00157 to 0.04109 between pairs of strains. Overall, genes on pSymA showed the highest mean HKY85 distance, followed by those on pSymB and the chromosome. Although evidence for recombination was found, the authors' population genetic analyses revealed overall significant linkage disequilibria among genes within both pSymA and the chromosome. However, genes on pSymB were in overall linkage equilibrium, consistent with frequent recombination among genes on this replicon. Furthermore, the genealogical comparisons among the three replicons identified significant incongruence, indicating reassortment among the three replicons in natural populations. The results suggest both shared and distinct patterns of molecular evolution among the three replicons in the genomes of natural strains of S. meliloti.
Collapse
Affiliation(s)
- Sheng Sun
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Hong Guo
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
19
|
Guo H, Sun S, Finan TM, Xu J. Novel DNA sequences from natural strains of the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti. Appl Environ Microbiol 2005; 71:7130-8. [PMID: 16269751 PMCID: PMC1287640 DOI: 10.1128/aem.71.11.7130-7138.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variation in genome size and content is common among bacterial strains. Identifying these naturally occurring differences can accelerate our understanding of bacterial attributes, such as ecological specialization and genome evolution. In this study, we used representational difference analysis to identify potentially novel sequences not present in the sequenced laboratory strain Rm1021 of the nitrogen-fixing bacterium Sinorhizobium meliloti. Using strain Rm1021 as the driver and the type strain of S. meliloti ATCC 9930, which has a genome size approximately 370 kilobases bigger than that of strain Rm1021, as the tester, we identified several groups of sequences in the ATCC 9930 genome not present in strain Rm1021. Among the 85 novel DNA fragments examined, 55 showed no obvious homologs anywhere in the public databases. Of the remaining 30 sequences, 24 contained homologs to the Rm1021 genome as well as unique segments not found in Rm1021, 3 contained sequences homologous to those published for another S. meliloti strain but absent in Rm1021, 2 contained sequences homologous to other symbiotic nitrogen-fixing bacteria (Rhizobium etli and Bradyrhizobium japonicum), and 1 contained a sequence homologous to a gene in a non-nitrogen-fixing species, Pseudomonas sp. NK87. Using PCR, we assayed the distribution of 12 of the above 85 novel sequences in a collection of 59 natural S. meliloti strains. The distribution varied widely among the 12 novel DNA fragments, from 1.7% to 72.9%. No apparent correlation was found between the distribution of these novel DNA sequences and their genotypes obtained using multilocus enzyme electrophoresis. Our results suggest potentially high rates of gene gain and loss in S. meliloti genomes.
Collapse
Affiliation(s)
- Hong Guo
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
20
|
Guerrero G, Peralta H, Aguilar A, Díaz R, Villalobos MA, Medrano-Soto A, Mora J. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 2005; 5:55. [PMID: 16229745 PMCID: PMC1276791 DOI: 10.1186/1471-2148-5-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomics has provided valuable insights into the nature of gene sequence variation and chromosomal organization of closely related bacterial species. However, questions about the biological significance of gene order conservation, or synteny, remain open. Moreover, few comprehensive studies have been reported for rhizobial genomes. RESULTS We analyzed the genomic sequences of four fast growing Rhizobiales (Sinorhizobium meliloti, Agrobacterium tumefaciens, Mesorhizobium loti and Brucella melitensis). We made a comprehensive gene classification to define chromosomal orthologs, genes with homologs in other replicons such as plasmids, and those which were species-specific. About two thousand genes were predicted to be orthologs in each chromosome and about 80% of these were syntenic. A striking gene colinearity was found in pairs of organisms and a large fraction of the microsyntenic regions and operons were similar. Syntenic products showed higher identity levels than non-syntenic ones, suggesting a resistance to sequence variation due to functional constraints; also, an unusually high fraction of syntenic products contained membranal segments. Syntenic genes encode a high proportion of essential cell functions, presented a high level of functional relationships and a very low horizontal gene transfer rate. The sequence variability of the proteins can be considered the species signature in response to specific niche adaptation. Comparatively, an analysis with genomes of Enterobacteriales showed a different gene organization but gave similar results in the synteny conservation, essential role of syntenic genes and higher functional linkage among the genes of the microsyntenic regions. CONCLUSION Syntenic bacterial genes represent a commonly evolved group. They not only reveal the core chromosomal segments present in the last common ancestor and determine the metabolic characteristics shared by these microorganisms, but also show resistance to sequence variation and rearrangement, possibly due to their essential character. In Rhizobiales and Enterobacteriales, syntenic genes encode a high proportion of essential cell functions and presented a high level of functional relationships.
Collapse
Affiliation(s)
- Gabriela Guerrero
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Humberto Peralta
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Alejandro Aguilar
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Rafael Díaz
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Miguel Angel Villalobos
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Program of Computational Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Jaime Mora
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| |
Collapse
|
21
|
Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM, Varani AM, Civerolo E, Van Sluys MA. Xylella and Xanthomonas Mobil'omics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:146-59. [PMID: 15969647 DOI: 10.1089/omi.2005.9.146] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gamma-proteobacterium Xanthomonadales groups two closely related genera of plant pathogens, Xanthomonas and Xylella. Whole genome sequencing and comparative analyses disclosed a high degree of identity and co-linearity of the chromosome backbone between species and strains. Differences observed are usually clustered into genomic islands, most of which are delimited by genetic mobile elements. Focus is given in this paper to describe which groups of mobile elements are found and what is the relative contribution of these elements to Xanthomonas and Xylella genomes. Insertion sequence (IS) elements have invaded the Xanthomonas genome several times, whereas Xylella is rich in phage-related regions. Also, different plasmids are found inhabiting the bacterial cells studied here. Altogether, these results suggest that the integrative elements such as phages and transposable elements as well as the episomal plasmids are important drivers of the genome evolution of this important group of plant pathogens.
Collapse
|
22
|
Batut J, Andersson SGE, O'Callaghan D. The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2004; 2:933-45. [PMID: 15550939 DOI: 10.1038/nrmicro1044] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the alpha-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular alpha-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss alpha-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.
Collapse
Affiliation(s)
- Jacques Batut
- Laboratory of Plant Microbe Interactions, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | | | | |
Collapse
|
23
|
Teyssier C, Marchandin H, Jumas-Bilak E. [The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity]. Can J Microbiol 2004; 50:383-96. [PMID: 15284884 DOI: 10.1139/w04-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The alpha-proteobacteria displayed diverse and often unconventional life-styles. In particular, they keep close relationships with the eucaryotic cell. Their genomic organization is often atypical. Indeed, complex genomes, with two or more chromosomes that could be linear and sometimes associated with plasmids larger than one megabase, have been described. Moreover, polymorphism in genome size and topology as well as in replicon number was observed among very related bacteria, even in a same species. Alpha-proteobacteria provide a good model to study the reductive evolution, the role and origin of multiple chromosomes, and the genomic fluidity. The amount of new data harvested in the last decade should lead us to better understand emergence of bacterial life-styles and to build the conceptual basis to improve the definition of the bacterial species.
Collapse
Affiliation(s)
- Corinne Teyssier
- Laboratoire de bactériologie, Faculté de pharmacie, Montpellier CEDEX 5, France
| | | | | |
Collapse
|