1
|
Liu YS, Deng Y, Chen CK, Khoo BL, Chua SL. Rapid detection of microorganisms in a fish infection microfluidics platform. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128572. [PMID: 35278965 DOI: 10.1016/j.jhazmat.2022.128572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Inadequate access to clean water is detrimental to human health and aquatic industries. Waterborne pathogens can survive prolonged periods in aquatic bodies, infect commercially important seafood, and resist water disinfection, resulting in human infections. Environmental agencies and research laboratories require a relevant, portable, and cost-effective platform to monitor microbial pathogens and assess their risk of infection on a large scale. Advances in microfluidics enable better control and higher precision than traditional culture-based pathogen monitoring approaches. We demonstrated a rapid, high-throughput fish-based teleost (fish)-microbe (TelM) microfluidic-based device that simultaneously monitors waterborne pathogens in contaminated waters and assesses their infection potential under well-defined settings. A chamber-associated port allows direct access to the animal, while the transparency of the TelM platform enables clear observation of sensor readouts. As proof-of-concept, we established a wound infection model using Pseudomonas aeruginosa-contaminated water in the TelM platform, where bacteria formed biofilms on the wound and secreted a biofilm metabolite, pyoverdine. Pyoverdine was used as fluorescent sensor to correlate P. aeruginosa contamination to infection. The TelM platform was validated with environmental waterborne microbes from marine samples. Overall, the TelM platform can be readily applied to assess microbial and chemical risk in aquatic bodies in resource-constrained settings.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chun Kwan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; City University of Hong Kong - Futian Shenzhen Research Institute, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Shenzhen Key Laboratory of Food Biological Safety Control, China.
| |
Collapse
|
2
|
Park AJ, Wright MA, Roach EJ, Khursigara CM. Imaging host-pathogen interactions using epithelial and bacterial cell infection models. J Cell Sci 2021; 134:134/5/jcs250647. [PMID: 33622798 DOI: 10.1242/jcs.250647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Madison A Wright
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada .,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Liang Z, Carothers K, Holmes A, Donahue D, Lee SW, Castellino FJ, Ploplis VA. Stable genetic integration of a red fluorescent protein in a virulent Group A Streptococcus strain. Access Microbiol 2020; 1:e000062. [PMID: 32974562 PMCID: PMC7472541 DOI: 10.1099/acmi.0.000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022] Open
Abstract
There are several advantages, both in vitro and in vivo, in utilizing bacteria that express a fluorescent protein. Such a protein can be transiently incorporated into the bacteria or integrated within the bacterial genome. The most widely utilized fluorescent protein is green fluorescent protein (GFP), but limitations exist on its use. Additional fluorescent proteins have been designed that have many advantages over GFP and technologies for their incorporation into bacteria have been optimized. In the current study, we report the successful integration and expression of a stable fluorescent reporter, mCherry (red fluorescent protein, RFP), into the genome of a human pathogen, Group A Streptococcus pyogenes (GAS) isolate AP53(S-). RFP was targeted at the atg codon of the fcR pseudogene that is present in the mga regulon of AP53(S-). Transcription of critical bacterial genes was not functionally altered by the genomic integration of mCherry. Host virulence both in vitro (keratinocyte infection and cytotoxicity) and in vivo (skin infection) was maintained in AP53(S-)-RFP. Additionally, survival of mice infected with either AP53(S-) or AP53(S-)-RFP was similar, demonstrating that overall pathogenicity of the AP53(S-) strain was not altered by the expression of mCherry. These studies demonstrate the feasibility of integrating a fluorescent reporter into the bacterial genome of a naturally virulent isolate of Group A S. pyogenes for comparative experimental studies.
Collapse
Affiliation(s)
- Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Holmes
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deborah Donahue
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Santos RS, Dakwar GR, Zagato E, Brans T, Figueiredo C, Raemdonck K, Azevedo NF, De Smedt SC, Braeckmans K. Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. Biomaterials 2017; 138:1-12. [PMID: 28550752 DOI: 10.1016/j.biomaterials.2017.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
The rising antimicrobial resistance contributes to 25000 annual deaths in Europe. This threat to the public health can only be tackled if novel antimicrobials are developed, combined with a more precise use of the currently available antibiotics through the implementation of fast, specific, diagnostic methods. Nucleic acid mimics (NAMs) that are able to hybridize intracellular bacterial RNA have the potential to become such a new class of antimicrobials and additionally could serve as specific detection probes. However, an essential requirement is that these NAMs should be delivered into the bacterial cytoplasm, which is a particular challenge given the fact that they are charged macromolecules. We consider these delivery challenges in relation to the gastric pathogen Helicobacter pylori, the most frequent chronic infection worldwide. In particular, we evaluate if cationic fusogenic liposomes are suitable carriers to deliver NAMs across the gastric mucus barrier and the bacterial envelope. Our study shows that DOTAP-DOPE liposomes post-PEGylated with DSPE-PEG (DSPE Lpx) can indeed successfully deliver NAMs into Helicobacter pylori, while offering protection to the NAMs from binding and inactivation in gastric mucus isolated from pigs. DSPE Lpx thus offer exciting new possibilities for in vivo diagnosis and treatment of Helicobacter pylori infections.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/administration & dosage
- Anti-Infective Agents/chemical synthesis
- Anti-Infective Agents/metabolism
- Cytoplasm/metabolism
- Drug Delivery Systems
- Drug Resistance, Microbial
- Fatty Acids, Monounsaturated/chemistry
- Fluorescent Dyes/chemistry
- Helicobacter Infections/diagnosis
- Helicobacter Infections/drug therapy
- Helicobacter Infections/microbiology
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- In Situ Hybridization, Fluorescence
- Liposomes
- Molecular Mimicry
- Mucus/chemistry
- Mucus/microbiology
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemical synthesis
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phosphatidylethanolamines/chemistry
- Polyethylene Glycols/chemistry
- Quaternary Ammonium Compounds/chemistry
- RNA, Bacterial/antagonists & inhibitors
- RNA, Bacterial/genetics
- RNA, Ribosomal/antagonists & inhibitors
- RNA, Ribosomal/genetics
- Stomach/microbiology
- Swine
Collapse
Affiliation(s)
- Rita S Santos
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Portugal
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Joyner C, Mills MK, Nayduch D. Pseudomonas aeruginosa in Musca domestica L.: temporospatial examination of bacteria population dynamics and house fly antimicrobial responses. PLoS One 2013; 8:e79224. [PMID: 24260174 PMCID: PMC3832466 DOI: 10.1371/journal.pone.0079224] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 01/13/2023] Open
Abstract
House flies associate with microbes throughout their life history. Bacteria ingested by adult flies enter the alimentary canal and face a hostile environment including antimicrobial defenses. Because the outcome of this interaction impacts bacterial survival and dissemination, our primary objective was to understand the temporospatial dynamics of fly-bacteria associations. We concurrently examined the temporospatial fate of GFP-expressing Pseudomonas aeruginosa (GFP-P. aeruginosa) in the house fly alimentary canal along with antimicrobial peptide (AMP) expression. Motile, viable GFP-P. aeruginosa were found in all regions of the alimentary canal and were culturable throughout the observation period (2–24 h). A significant decrease in recoverable bacteria occurred between 2 and12 h, followed by an increase between 12 and 24 h. qRT-PCR analysis showed expression of the AMPs cecropin, diptericin, and defensin both locally (gut) and systemically. Furthermore, mRNA of all AMPs were expressed throughout gut tissues, with some tissue-specific temporal variation. Interestingly, fluctuation in recoverable P. aeruginosa was associated with AMP protein expression in the gut (immunofluorescent signal detection), but not with mRNA (qRTPCR). In regards to vector competence, flies excreted GFP-P. aeruginosa throughout the 24 h period, serving as both reservoirs and disseminators of this bacterium. Collectively, our data show flies can harbor and disseminate P. aeruginosa, and that the interactions of fly defenses with bacteria can influence vector competence.
Collapse
Affiliation(s)
- Chester Joyner
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
| | - Mary Katherine Mills
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
| | - Dana Nayduch
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Larrosa M, Truchado P, Espín JC, Tomás-Barberán FA, Allende A, García-Conesa MT. Evaluation of Pseudomonas aeruginosa (PAO1) adhesion to human alveolar epithelial cells A549 using SYTO 9 dye. Mol Cell Probes 2012; 26:121-6. [PMID: 22464926 DOI: 10.1016/j.mcp.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an aerobic Gram-negative bacterium characterized by a natural resistance to several antibiotics. It is a major cause of nosocomial infections in patients with compromised host defence mechanisms mainly related to the respiratory tract. P. aeruginosa infection first step is the adhesion of the bacteria to the host cells and thus, the development of techniques that can easily assess adhesion of bacteria strains and of bacteria isolated from biological samples is fundamental. The aim of our work was to develop a fast and effective method to evaluate the adhesion of P. aeruginosa to bronchial epithelial cells. To meet our goal we optimized a staining protocol using the vital dye SYTO 9 and P. aeruginosa PAO1. We established the appropriate dying conditions as well as the stability of the stained bacteria. Adhesion was first measured using the traditional plate counting method and then, adhesion values were compared to those obtained using a fluorescence microplate reader and epifluorescence microscopy. Our results show that the use of SYTO 9 does not interfere with the bacteria viability, bacteria cell growth, and adhesion of P. aeruginosa to A549 epithelial cells. Both the fluorescence microplate reader and the epifluorescence microscopy gave similar results to those attained with the plate counting method, however, the epifluorescence microscopy also allowed for simultaneous discrimination of damaging effects on the human cells. Overall, our data indicate that the use of SYTO 9 combined with a fluorescence microplate reader or an epifluorescence microscope provides a rapid method to evaluate the adhesion of P. aeruginosa to human epithelial cells. However, to show unequivocally that a specific drug or compound has a truly inhibitory effect on the bacterial adhesion without affecting the number of human cells, the epifluorescence microscopy is recommended.
Collapse
Affiliation(s)
- Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. J Microbiol Methods 2011; 86:33-41. [DOI: 10.1016/j.mimet.2011.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 11/23/2022]
|
8
|
Gravelle S, Barnes R, Hawdon N, Shewchuk L, Eibl J, Lam JS, Ulanova M. Up-regulation of integrin expression in lung adenocarcinoma cells caused by bacterial infection: in vitro study. Innate Immun 2009; 16:14-26. [PMID: 19710103 DOI: 10.1177/1753425909106170] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Integrins are a large family of adhesion receptors that are known to be key signaling molecules in both physiological and pathological processes. Previous studies have demonstrated that the expression of integrin receptors in the pulmonary epithelium can change under various pathological conditions, such as injury, inflammation, or malignant transformation. We hypothesize that integrin expression can be altered by stimulation of lung epithelial cells with an opportunistic bacterial pathogen Pseudomonas aeruginosa. Using the A549 adenocarcinoma cell line that expressed a low level of several integrin subunits we have demonstrated that P. aeruginosa infection in vitro caused a rapid up-regulation of α5, αv, β1, and β4 integrins at both the mRNA and protein level. Neither heat-killed P. aeruginosa strain PAK nor its live isogenic mutants lacking pili or lipopolysaccharide (LPS) core oligosaccharide showed any effect on integrin expression in A549 cells as compared to the use of the wild-type PAK strain. These results establish that up-regulation of integrin expression is dependent on the internalization of live bacteria possessing intact pili and LPS. Gene silencing of integrin-linked kinase in A549 cells caused a significant decrease in the release of proinflammatory cytokines in response to P. aeruginosa stimulation. Although further studies are warranted towards understanding the precise role of integrin receptors in prominent inflammation caused by P. aeruginosa, our findings suggest a possibility of using specific integrin inhibitors for therapy of pulmonary inflammatory conditions caused by pathogenic micro-organisms.
Collapse
Affiliation(s)
- Sean Gravelle
- Medical Sciences Division, Northern Ontario School of Medicine West Campus, Ontario, Canada, Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Rebecca Barnes
- Medical Sciences Division, Northern Ontario School of Medicine West Campus, Ontario, Canada, Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Nicole Hawdon
- Medical Sciences Division, Northern Ontario School of Medicine West Campus, Ontario, Canada
| | - Lee Shewchuk
- Medical Sciences Division, Northern Ontario School of Medicine West Campus, Ontario, Canada
| | - Joseph Eibl
- Northern Ontario School of Medicine East Campus, Ontario, Canada
| | - Joseph S. Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine West Campus, Ontario, Canada, Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
9
|
Ulanova M, Gravelle S, Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J Innate Immun 2008; 1:4-17. [PMID: 20375562 PMCID: PMC7190199 DOI: 10.1159/000141865] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 12/19/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane cell adhesion receptors. During the last decade, it has become clear that integrins significantly participate in various host-pathogen interactions involving pathogenic bacteria, fungi, and viruses. Many bacteria possess adhesins that can bind either directly or indirectly to integrins. However, there appears to be an emerging role for integrins beyond simply adhesion molecules. Given the conserved nature of integrin structure and function, and the diversity of the pathogens which use integrins, it appears that they may act as pattern recognition receptors important for the innate immune response. Several clinically significant bacterial pathogens target lung epithelial integrins, and this review will focus on exploring various structures and mechanisms involved in these interactions.
Collapse
Affiliation(s)
- Marina Ulanova
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ont., Canada.
| | | | | |
Collapse
|