1
|
Depth-Dependent Concentrations of E. coli in Agricultural Irrigation Ponds. WATER 2022. [DOI: 10.3390/w14142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microbial water quality surveys of irrigation sources are conducted by measuring the concentrations of generic E. coli. The objective of this study was to evaluate the dependence of E. coli concentrations on the water sampling depth at different times of the day. Three irrigation ponds were sampled in Maryland eleven times during the growing seasons of 2019–2021. Water was collected in replicates at the surface (0 cm) and then in 50 cm depth intervals at 9:00, 12:00, and 15:00. Ponds 1 and 2 were sampled to 150 cm, whereas Pond 3 was only sampled to the 50 cm depth due to it having a shallower average depth. An analysis of variance test revealed that E. coli concentrations significantly differed by depth in only one pond (p > 0.05) but on multiple dates. Additionally, the sampling time of day was significant at only two of eleven of the observation dates across ponds; in those cases, the average concentrations across the pond increased in the order of 9:00 > 12:00 > 15:00. This study shows that E. coli concentrations measured in irrigation ponds may substantially differ depending on the sampling depth and time of day, and that these factors should be accounted for in the monitoring design.
Collapse
|
2
|
García-Gil Á, Marugán J, Vione D. A model to predict the kinetics of direct (endogenous) virus inactivation by sunlight at different latitudes and seasons, based on the equivalent monochromatic wavelength approach. WATER RESEARCH 2022; 208:117837. [PMID: 34861559 DOI: 10.1016/j.watres.2021.117837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Sunlight plays an important role in the inactivation of pathogenic microorganisms such as bacteria and viruses in water. Here we present a model that is able to predict the kinetics of direct virus inactivation (i.e. inactivation triggered by sunlight absorption by the virion, without the role played by photochemically produced reactive intermediates generated by water-dissolved photosensitizers) on a global scale (from 60 °S to 60 °N latitude) and for the different months of the year. The model is based on the equivalent monochromatic wavelength (EMW) approach that was introduced recently, and which largely simplifies complex polychromatic calculations by approximating them with a monochromatic equation at the proper wavelength, the EMW. The EMW equation was initially established for mid-July conditions at a mid-latitude, and was then extended to different seasons and to the latitude belt where the day-night cycle is always observed throughout the year. By so doing, the first-order rate constant of direct virus photoinactivation can be predicted on a global scale, with the use of a relatively simple equation plus tables of pre-calculated input data, as a function of latitude, month, and key water parameters. The model was here applied to the virus organism phiX174, a somatic phage that is often used as proxy for pathogenic viruses undergoing fast direct inactivation, and for which a wide array of published inactivation data is available. Model predictions are validated by comparison with field data of inactivation of somatic phages by sunlight.
Collapse
Affiliation(s)
- Ángela García-Gil
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid 28933, Spain; Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid 28933, Spain.
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, Torino 10125, Italy..
| |
Collapse
|
3
|
Zhang X, Lardizabal A, Silverman AI, Vione D, Kohn T, Nguyen TH, Guest JS. Global Sensitivity Analysis of Environmental, Water Quality, Photoreactivity, and Engineering Design Parameters in Sunlight Inactivation of Viruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8401-8410. [PMID: 32469206 DOI: 10.1021/acs.est.0c01214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sunlight-mediated inactivation of microorganisms is a low-cost approach to disinfect drinking water and wastewater. The reactions involved are affected by a wide range of factors, and a lack of knowledge about their relative importance makes it challenging to optimize treatment systems. To characterize the relative importance of environmental conditions, photoreactivity, water quality, and engineering design in the sunlight inactivation of viruses, we modeled the inactivation of three-human adenovirus and two bacteriophages-MS2 and phiX174-in surface waters and waste stabilization ponds by integrating solar irradiance and aquatic photochemistry models under uncertainty. Through global sensitivity analyses, we quantitatively apportioned the variability of predicted sunlight inactivation rate constants to different factors. Most variance was associated with the variability in and interactions among time, location, nonpurgeable organic carbon (NPOC) concentration, and pond depth. The photolysis quantum yield of the virus outweighed the seasonal solar motion in the impact on inactivation rates. Further, comparison of simulated sunlight inactivation efficacy in maturation ponds under different design decisions showed that reducing pond depth can increase the log inactivation at the cost of larger land area, but increasing hydraulic retention time by adding ponds in series yielded greater improvements in inactivation.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Amanda Lardizabal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- School of Global Public Health, New York University, New York, New York 10003, United States
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Accounting for the Three-Dimensional Distribution of Escherichia coli Concentrations in Pond Water in Simulations of the Microbial Quality of Water Withdrawn for Irrigation. WATER 2020. [DOI: 10.3390/w12061708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evaluating the microbial quality of irrigation water is essential for the prevention of foodborne illnesses. Generic Escherichia coli (E. coli) is used as an indicator organism to estimate the microbial quality of irrigation water. Monitoring E. coli concentrations in irrigation water sources is commonly performed using water samples taken from a single depth. Vertical gradients of E. coli concentrations are typically not measured or are ignored; however, E. coli concentrations in water bodies can be expected to have horizontal and vertical gradients. The objective of this work was to research 3D distributions of E. coli concentrations in an irrigation pond in Maryland and to estimate the dynamics of E. coli concentrations at the water intake during the irrigation event using hydrodynamic modeling in silico. The study pond is about 22 m wide and 200 m long, with an average depth of 1.5 m. Three transects sampled at 50-cm depth intervals, along with intensive nearshore sampling, were used to develop the initial concentration distribution for the application of the environmental fluid dynamic code (EFDC) model. An eight-hour irrigation event was simulated using on-site data on the wind speed and direction. Substantial vertical and horizontal variations in E. coli concentrations translated into temporally varying concentrations at the intake. Additional simulations showed that the E. coli concentrations at the intake reflect the 3D distribution of E. coli in the limited pond section close to the intake. The 3D sampling revealed E. coli concentration hot spots at different depths across the pond. Measured and simulated 3D E. coli concentrations provide improved insights into the expected microbial water quality of irrigation water compared with 1D or 2D representations of the spatial variability of the indicator concentration.
Collapse
|
5
|
|
6
|
Kiaghadi A, Rifai HS. Natural attenuation of indicator bacteria in coastal streams and estuarine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:230-240. [PMID: 31055102 DOI: 10.1016/j.scitotenv.2019.04.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
One of the most significant causes of poor water quality is the presence of pathogens. To reduce the cost of human exposure to microbial contamination, monitoring of Fecal Indicator Bacteria (FIB), as a surrogate for the presence of pathogens in natural waters, has become the norm. A total maximum daily load (TMDL) framework is used to establish limits for microbial concentrations in impaired waterbodies. In order to meet microbial loads determined by the TMDLs, reductions in microbial sources varying from 50% to almost complete elimination are required. Such targets are fairly difficult, if not impossible, to achieve. A natural attenuation (NA) framework is proposed that takes into account the connectivity between freshwater streams and their receiving coastal estuaries. The framework accounts for destructive and non-destructive mechanisms and defines three regimes: NA 1 - reaction-dilution mixing at the freshwater-tidal interface, NA 2 - advection-reactions within the tidally influenced coastal stream, and NA 3 - dilution-discharge at the interface with the estuary. The framework was illustrated using the Houston Metropolitan area freshwater streams, their discharge into the Houston Ship Channel (HSC) and into Galveston Bay. FIB concentrations in Galveston Bay were much lower when compared to FIB concentrations in Houston streams. Lower enterococci concentrations in tributary tidal waters were found compared to their counterparts in fresh waters (NA1 regime). Additionally, 70% reduction in FIB loads within the HSC was demonstrated as well as a decreasing trend in enterococci geometric means, from upstream to downstream, on the order of 0.092 day-1 (NA2 regime). Lower enterococci concentrations in Galveston Bay at the confluence with the HSC were also demonstrated (NA3 regime). Statistical testing showed that dilution, tide-associated processes, and salinity are the most important NA mechanisms and indicated the significant effect of ambient temperature and rainfall patterns on FIB concentrations and the NA mechanisms.
Collapse
Affiliation(s)
- Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, 4726 Calhoun, Houston, TX 77204-4003, USA.
| |
Collapse
|
7
|
Maiga Y, Wethé J, Ouattara AS, Traoré AS. Predicting attenuation of solar radiation (UV-B, UV-A and PAR) in waste stabilization ponds under Sahelian climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21341-21349. [PMID: 28718028 DOI: 10.1007/s11356-017-9668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Because of its importance in pathogen removal and algal productivity in waste stabilization ponds, sunlight penetration was measured in microcosms and in situ under Sahelian climatic conditions. The different wavelengths were detected using a submersible radiometer equipped with three sensors: UV-B (311 nm), UV-A (369 nm) and photosynthetically available radiation (PAR, 400-700 nm). UV-B was more attenuated than UV-A and PAR. Facultative pond was more light-attenuating than maturation pond. The mean euphotic depths for UV-B were 0.20 and 0.31 m, respectively, in the facultative and maturation ponds; PAR penetrated deeper with mean euphotic depths of 0.27 and 0.42 m, respectively. The mean Secchi depths were 0.16 and 0.10 m in the maturation and facultative ponds waters, respectively. In view of the reported results, the contribution of the deeper sections of ponds to pathogen removal mediated by sunlight seems negligible. Therefore, when designing WSPs, these findings should be considered to increase the penetration of damaging wavelengths in order to ensure efficient microbial removal. For more pathogen elimination, downstream shallow ponds could be considered. The paper also shows how suspended solids, turbidity, and Secchi depth are related to the attenuation coefficients and euphotic depths. The developed models could be used to predict light penetration and then algal growth and pathogen removal mediated by sunlight in waste stabilization ponds located in Sahelian climate.
Collapse
Affiliation(s)
- Ynoussa Maiga
- Laboratory of Microbiology and Microbial Biotechnology, University Ouaga 1 Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
| | - Joseph Wethé
- International Institute for Water and Environmental Engineering, 01 BP 594, Ouagadougou 01, Burkina Faso
| | - Aboubakar Sidiki Ouattara
- Laboratory of Microbiology and Microbial Biotechnology, University Ouaga 1 Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Alfred S Traoré
- Laboratory of Microbiology and Microbial Biotechnology, University Ouaga 1 Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
8
|
Abaya LM, Wiegner TN, Colbert SL, Beets JP, Carlson KM, Kramer KL, Most R, Couch CS. A multi-indicator approach for identifying shoreline sewage pollution hotspots adjacent to coral reefs. MARINE POLLUTION BULLETIN 2018; 129:70-80. [PMID: 29680569 DOI: 10.1016/j.marpolbul.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Sewage pollution is contributing to the global decline of coral reefs. Identifying locations where it is entering waters near reefs is therefore a management priority. Our study documented shoreline sewage pollution hotspots in a coastal community with a fringing coral reef (Puakō, Hawai'i) using dye tracer studies, sewage indicator measurements, and a pollution scoring tool. Sewage reached shoreline waters within 9 h to 3 d. Fecal indicator bacteria concentrations were high and variable, and δ15N macroalgal values were indicative of sewage at many stations. Shoreline nutrient concentrations were two times higher than those in upland groundwater. Pollution hotspots were identified with a scoring tool using three sewage indicators. It confirmed known locations of sewage pollution from dye tracer studies. Our study highlights the need for a multi-indicator approach and scoring tool to identify sewage pollution hotspots. This approach will be useful for other coastal communities grappling with sewage pollution.
Collapse
Affiliation(s)
- Leilani M Abaya
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA; Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA.
| | - Tracy N Wiegner
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA.
| | - Steven L Colbert
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA.
| | - James P Beets
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA.
| | - Kaile'a M Carlson
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA; National Park Service, Kaloko-Honokōhau National Historic Park, 73-4786 Kanalani St., #14, Kailua-Kona, HI 96743, USA.
| | - K Lindsey Kramer
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA; Pacific Cooperative Studies Unit, Hawai'i Division of Aquatic Resources, 75-308B Kealakehe Pkwy, Kailua Kona, HI 96740, USA
| | - Rebecca Most
- The Nature Conservancy, 923 Nuuanu Ave., Honolulu, HI 96817, USA.
| | - Courtney S Couch
- The Nature Conservancy, 923 Nuuanu Ave., Honolulu, HI 96817, USA; Hawai'i Institute of Marine Biology, P.O. Box 1346, Kāne'ohe, HI 96744, USA
| |
Collapse
|
9
|
Dahl NW, Woodfield PL, Lemckert CJ, Stratton H, Roiko A. A practical model for sunlight disinfection of a subtropical maturation pond. WATER RESEARCH 2017; 108:151-159. [PMID: 27871746 DOI: 10.1016/j.watres.2016.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Maturation ponds are a type of waste stabilisation pond (WSP) designed to reduce carbon, nutrients and pathogens in the final stages of a WSP wastewater treatment system. In this study, a one-dimensional plug-flow pond model is proposed to predict temperature and E. coli concentration distributions and overall pond disinfection performance. The model accounts for the effects of vertical mixing and ultraviolet light-dependent die-off rate kinetics. Measurements of radiation, wind-speed, humidity and air temperature are recorded for model inputs and good agreement with measured vertical temperature distributions and outlet E. coli concentrations is found in an operational, subtropical maturation pond. Measurements and the model both show a diurnal pattern of stratification during daylight hours and natural convective mixing at night on days corresponding to low wind speeds, strong heat input from solar radiation and clear night skies. In the evenings, the thermal stratification is shown to collapse due to surface energy loss via longwave radiation which triggers top-down natural convective mixing. The disinfection model is found to be sensitive to the choice of die-off kinetics. The diurnal mixing pattern is found to play a vital role in the disinfection process by ensuring that pathogens are regularly transported to the near-surface layer where ultraviolet light penetration is effective. The model proposed in this paper offers clear advantages to pond designers by including geographical specific, time-varying boundary conditions and accounting for the important physical aspects of vertical mixing and sunlight inactivation processes, yet is computationally straightforward.
Collapse
Affiliation(s)
- N W Dahl
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia.
| | - P L Woodfield
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia.
| | - C J Lemckert
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia; Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia.
| | - H Stratton
- Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia; School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland, 4111, Australia.
| | - A Roiko
- Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia; School of Medicine, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4222, Australia.
| |
Collapse
|
10
|
Reichwaldt ES, Ho WY, Zhou W, Ghadouani A. Sterols indicate water quality and wastewater treatment efficiency. WATER RESEARCH 2017; 108:401-411. [PMID: 27839832 DOI: 10.1016/j.watres.2016.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/04/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems.
Collapse
Affiliation(s)
- Elke S Reichwaldt
- Aquatic Ecology and Ecosystem Studies, M015, School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.
| | - Wei Y Ho
- Aquatic Ecology and Ecosystem Studies, M015, School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Wenxu Zhou
- M316, ARC Centre of Excellence for Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Anas Ghadouani
- Aquatic Ecology and Ecosystem Studies, M015, School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
11
|
Durham BW, Porter L, Webb A, Thomas J. Seasonal influence of environmental variables and artificial aeration on Escherichia coli in small urban lakes. JOURNAL OF WATER AND HEALTH 2016; 14:929-941. [PMID: 27959871 DOI: 10.2166/wh.2016.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated patterns of Escherichia coli in urban lakes in Lubbock, Texas. Specific objectives were to (1) document seasonal patterns in abundance of E. coli over a 3-year period, (2) identify environmental factors, including effects of migratory geese and artificial aeration devices that may influence E. coli abundance, and (3) determine if E. coli abundance over time was similar for individual lakes. Water samples were collected monthly for 36 months from six lakes, three of which contained artificial aeration devices (fountains). Regression models were constructed to determine which environmental variables most influence E. coli abundance in summer and winter seasons. Escherichia coli is present in the lakes of Lubbock, Texas year-round and typically exceeds established bacterial thresholds for recreational waters. Models most frequently contained pH and dissolved oxygen as predictor variables and explained from 17.4% to 92.4% of total variation in E. coli. Lakes with fountains had a higher oxygen concentration during summer and contained consistently less E. coli. We conclude that solar irradiation in synergy with pH and dissolved oxygen is the primary control mechanism for E. coli in study lakes, and that fountains help control abundance of fecal bacteria within these systems.
Collapse
Affiliation(s)
- Bart W Durham
- Department of Natural Sciences, Lubbock Christian University, Lubbock, TX 79407, USA E-mail:
| | - Lucy Porter
- Department of Natural Sciences, Lubbock Christian University, Lubbock, TX 79407, USA E-mail:
| | - Allie Webb
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Joshua Thomas
- Department of Natural Sciences, Lubbock Christian University, Lubbock, TX 79407, USA E-mail:
| |
Collapse
|
12
|
Beaudequin D, Harden F, Roiko A, Stratton H, Lemckert C, Mengersen K. Modelling microbial health risk of wastewater reuse: A systems perspective. ENVIRONMENT INTERNATIONAL 2015; 84:131-141. [PMID: 26277638 DOI: 10.1016/j.envint.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/15/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
There is a widespread need for the use of quantitative microbial risk assessment (QMRA) to determine reclaimed water quality for specific uses, however neither faecal indicator levels nor pathogen concentrations alone are adequate for assessing exposure health risk. The aim of this study was to build a conceptual model representing factors contributing to the microbiological health risks of reusing water treated in maturation ponds. This paper describes the development of an unparameterised model that provides a visual representation of theoretical constructs and variables of interest. Information was collected from the peer-reviewed literature and through consultation with experts from regulatory authorities and academic disciplines. In this paper we explore how, considering microbial risk as a modular system, following the QMRA framework enables incorporation of the many factors influencing human exposure and dose response, to better characterise likely human health impacts. By using and expanding upon the QMRA framework we deliver new insights into this important field of environmental exposures. We present a conceptual model of health risk of microbial exposure which can be used for maturation ponds and, more importantly, as a generic tool to assess health risk in diverse wastewater reuse scenarios.
Collapse
Affiliation(s)
- Denise Beaudequin
- Faculty of Health, Queensland University of Technology, Gardens Point Campus, 2 George Street, Brisbane, Queensland 4000, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Fiona Harden
- Faculty of Health, Queensland University of Technology, Gardens Point Campus, 2 George Street, Brisbane, Queensland 4000, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Anne Roiko
- School of Medicine, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia; Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Dr, Southport, Queensland 4215, Australia.
| | - Helen Stratton
- School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia; Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Dr, Southport, Queensland 4215, Australia.
| | - Charles Lemckert
- Griffith School of Engineering, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia; Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Dr, Southport, Queensland 4215, Australia.
| | - Kerrie Mengersen
- Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, 2 George Street, Brisbane, Queensland 4000, Australia; Institute for Future Environments (IFE), Queensland University of Technology, Gardens Point Campus, 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
13
|
Moumouni DA, Andrianisa HA, Konaté Y, Ndiaye A, Maïga AH. Inactivation of Escherichia coli in a baffled pond with attached growth: treating anaerobic effluent under the Sahelian climate. ENVIRONMENTAL TECHNOLOGY 2015; 37:1054-1064. [PMID: 26496019 DOI: 10.1080/09593330.2015.1098732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate and understand the zero-level detection of Escherichia coli (E. coli) at the outlet of an improved waste stabilization pond. Wastewaters were collected from the International Institute for Water and Environmental Engineering (2iE) campus and were subjected to biological treatment. The system included two-stage Anaerobic Reactors followed by a Baffled Pond (AR-BP) with recycled plastic media as a medium for attached growth and a control pond (CP). Three vertical baffles were installed, giving four compartments in the baffled pond (BP). The research was conducted on the pilot scale from March to July 2014, by monitoring E. coli, pH, temperature, dissolved oxygen (DO) and chlorophyll-a in each compartment and at different depths. The results show that E. coli concentrations were lower in top layers of all compartments with an undetectable level in the last compartment up to 0.60 m deep. E. coli mean removal efficiencies and decay rates were achieved by significant difference in BP (4.5 log-units, 9.1 day(-1)) and CP (1.1 log-units, 1.1 day(-1)). Higher values of pH (≥9), temperature (≥32°C), DO (≥ 8 mg/L) and chlorophyll-a (≥ 1000 µg/L) were observed at the surface of BP, whereas lower values were shown at the bottom. Sedimentation combined with the synergetic effects of the physicochemical parameters and environmental factors would be responsible for the inactivation of E. coli in BP. It was concluded that the AR-BP could be applied as an alternative low-cost wastewater treatment technology for developing countries and recommended for reuse of their effluent for restricted peri-urban irrigation.
Collapse
Affiliation(s)
- D A Moumouni
- a International Institute of Water and Environmental Engineering 2iE-Foundation , Ouagadougou , Burkina Faso
| | - H A Andrianisa
- a International Institute of Water and Environmental Engineering 2iE-Foundation , Ouagadougou , Burkina Faso
| | - Y Konaté
- a International Institute of Water and Environmental Engineering 2iE-Foundation , Ouagadougou , Burkina Faso
| | - A Ndiaye
- a International Institute of Water and Environmental Engineering 2iE-Foundation , Ouagadougou , Burkina Faso
| | - A H Maïga
- a International Institute of Water and Environmental Engineering 2iE-Foundation , Ouagadougou , Burkina Faso
| |
Collapse
|
14
|
Johnston KK, Dorsey JH, Saez JA. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:58. [PMID: 25647802 DOI: 10.1007/s10661-015-4314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.
Collapse
|
15
|
Maiga Y, Moyenga D, Nikiema BC, Ushijima K, Maiga AH, Funamizu N. Designing slanted soil system for greywater treatment for irrigation purposes in rural area of arid regions. ENVIRONMENTAL TECHNOLOGY 2014; 35:3020-3027. [PMID: 25189850 DOI: 10.1080/09593330.2014.929180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To solve the unpleasant disposal of greywater in rural area and allow its collection for reuse in gardening, a slanted soil treatment system (SSTS) was designed and installed in two households. Granitic gravel of 1-9 mm size was used as the filter medium. The aim of this study was to design a SSTS and assess its suitability as a treatment system allowing greywater reuse in gardening. The efficiency of the SSTS was assessed based on organic matter and bacterial pollution removal. The developed SSTS allowed the collection of greywater from three main sources (shower, dishwashing and laundry) in rural area. The SSTS is efficient in removing at least 50% of suspended solids, chemical oxygen demand and biological oxygen demand. The study highlighted that, contrary to the common perception, greywater streams in rural area are heavily polluted with faecal indicators. The removal efficiency of faecal indicators was lower than 2 log units, and the bacteriological quality of the effluents is generally higher than the WHO reuse guidelines for restricted irrigation. Longer retention time is required to increase the efficiency. The possibility of reusing the treated greywater as irrigation water is discussed on the basis of various qualitative parameters. The SSTS is a promising greywater treatment system for small communities in the rural area in the Sahelian region. To increase the treatment efficiency, future research will focus on the characteristics of the SSTS, the grain size and the establishment of a pretreatment step.
Collapse
Affiliation(s)
- Y Maiga
- a Joint Research Centre for Water and Climate , International Institute for Water and Environmental Engineering , 01 BP 594 Ouagadougou 01, Burkina Faso
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens.
Collapse
|