1
|
Puentes B, Souto A, Balado M, Rodríguez J, Osorio CR, Jiménez C, Lemos ML. A novel genomic island encodes vibrioferrin synthesis in the marine pathogen Photobacterium damselae subsp. damselae. Microb Pathog 2025; 199:107218. [PMID: 39662786 DOI: 10.1016/j.micpath.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
In this study, we identified and analyzed a novel genomic island (GI), named pddGI-1, located on chromosome II of certain strains of the marine pathogen Photobacterium damselae subsp. damselae (Pdd). This GI shares structural similarities with other GIs found in Vibrio species, such as the Vibrio seventh pandemic island-II (VSP-II) of V. cholerae. The pddGI-1 island is a mosaic of gene blocks that encode functions related to ROS defense, anaerobic energy metabolism, and restriction-modification (RM) systems. Notably, pddGI-1 also includes a complete vibrioferrin siderophore system, enabling the bacteria to thrive in low-iron environments. Vibrioferrin was chemically identified from cell-free supernatants of Pdd RG91. Additionally, a pvsD mutant deficient in vibrioferrin biosynthesis was generated and analyzed. The results suggest that Pdd strains harbouring pddGI-1 gain a distinct growth advantage under iron-limited conditions. These findings, along with previous research, highlight the significant heterogeneity in iron assimilation systems among Pdd strains.
Collapse
Affiliation(s)
- Beatriz Puentes
- Department of Microbiology and Parasitology, Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Souto
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain.
| | - Carlos R Osorio
- Department of Microbiology and Parasitology, Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain.
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| |
Collapse
|
2
|
Battistini R, Masotti C, Giorda F, Grattarola C, Peletto S, Testori C, Zoppi S, Berio E, Crescio MI, Pussini N, Serracca L, Casalone C. Photobacterium damselae subsp. damselae in Stranded Cetaceans: A 6-Year Monitoring of the Ligurian Sea in Italy. Animals (Basel) 2024; 14:2825. [PMID: 39409774 PMCID: PMC11475299 DOI: 10.3390/ani14192825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Photobacterium damselae subsp. damselae (Pdd) is an increasingly common bacterium in post-mortem diagnostics of beached marine mammals, but little is known about its precise etiological responsibility. To estimate the prevalence of Pdd in stranded cetaceans from 2017 to 2022 on the Ligurian coast (Pelagos Sanctuary), we tested tissues from 53 stranded individuals belonging to four cetacean species. DNA extracts from cetacean tissue were screened using a polymerase chain reaction (PCR) assay targeting the Pdd ureC gene. Positive samples were screened by PCR for dly, hlyApl and hlyAch hemolysin genes, which were confirmed by sequencing. Twenty-two out of 53 (41.5%) cetaceans analyzed by PCR were confirmed for Pdd DNA in at least one tissue among those analyzed. Five of these cetaceans were positive for at least one of the hemolysin genes tested. In all Pdd-positive cetaceans, other pathogens that were considered responsible for the causa mortis of the animals were also found. The results provide new information on the spread of Pdd in cetaceans and support the thesis that Pdd might be an opportunistic agent that could contribute to worsening health conditions in subjects already compromised by other pathogens. However, further studies are needed to investigate and deepen this hypothesis.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Enrica Berio
- ASL 1 Sistema Sanitario Regione Liguria, Via Aurelia Ponente 97, 18038 Sanremo, Italy;
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Nicola Pussini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| |
Collapse
|
3
|
Warnakula WADLR, Udayantha HMV, Liyanage DS, Tharanga EMT, Omeka WKM, Dilshan MAH, Hanchapola HACR, Jayasinghe JDHE, Jeong T, Wan Q, Lee J. Galectin-8-like isoform X1 mediates antibacterial, antiviral, and antioxidant responses in red-lip mullet (Planiliza haematocheilus) through positive modulation of pro-inflammatory cytokine, chemokine, and enzymatic antioxidant activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105182. [PMID: 38636700 DOI: 10.1016/j.dci.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to β-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 μg/mL or 100 μg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.
Collapse
Affiliation(s)
- W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
4
|
Suzzi AL, Stat M, Gaston TF, Siboni N, Williams NLR, Seymour JR, Huggett MJ. Elevated estuary water temperature drives fish gut dysbiosis and increased loads of pathogenic vibrionaceae. ENVIRONMENTAL RESEARCH 2023; 219:115144. [PMID: 36584839 DOI: 10.1016/j.envres.2022.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Marine water temperatures are increasing globally, with eastern Australian estuaries warming faster than predicted. There is growing evidence that this rapid warming of coastal waters is increasing the abundance and virulence of pathogenic members of the Vibrionaceae, posing a significant health risk to both humans and aquatic organisms. Fish disease, notably outbreaks of emerging pathogens in response to environmental perturbations such as heatwaves, have been recognised in aquaculture settings. Considerably less is known about how rising sea surface temperatures will impact the microbiology of wild fish populations, particularly those within estuarine systems that are more vulnerable to warming. We used a combination of Vibrio-specific quantitative PCR and amplicon sequencing of the 16S rRNA and hsp60 genes to examine seawater and fish (Pelates sexlineatus) gut microbial communities across a quasi-natural experimental system, where thermal pollution from coal-fired power stations creates a temperature gradient of up to 6 °C, compatible with future predicted temperature increases. At the warmest site, fish hindgut microbial communities were in a state of dysbiosis characterised by shifts in beta diversity and a proliferation (71.5% relative abundance) of the potential fish pathogen Photobacterium damselae subsp. damselae. Comparable patterns were not identified in the surrounding seawater, indicating opportunistic proliferation within estuarine fish guts under thermal stress. A subsequent evaluation of predicted future warming-related risk due to pathogenic Vibrionaceae in temperate estuarine fish demonstrated that warming is likely to drive opportunistic pathogen increases in the upper latitudinal range of this estuarine fish, potentially impacting adaptations to future warming. These findings represent a breakthrough in our understanding of the dynamics of emerging pathogens in populations of wild aquatic organisms within environments likely to experience rapid warming under future climate change.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, NSW, 2007, Australia
| | - Nathan L R Williams
- Climate Change Cluster, University of Technology Sydney, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, NSW, 2007, Australia
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
5
|
Osorio CR, Vences A, Matanza XM, Terceti MS. Photobacterium damselae subsp. damselae, a generalist pathogen with unique virulence factors and high genetic diversity. J Bacteriol 2018; 200:e00002-18. [PMID: 29440249 PMCID: PMC6040198 DOI: 10.1128/jb.00002-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Photobacterium damselae subsp. damselae causes vibriosis in a variety of marine animals, including fish species of importance in aquaculture. It also may cause wound infections in humans that can progress into a fatal outcome. Two major virulence factors are encoded within the large conjugative plasmid pPHDD1: the phospholipase-D damselysin (Dly) and the pore-forming toxin Phobalysin P (PhlyP). The two toxins exert hemolytic and cytolytic activity in a synergistic manner. Albeit PhlyP has close homologues in many Vibrio species, it has unique features that differentiate it from related toxins. Dly phospholipase constitutes a singular trait of P. damselae subsp. damselae among the Vibrionaceae, although related toxins are found in members of the Aeromonadaceae Fish farm outbreaks can also be caused by plasmidless strains. Such observation led to the characterization of two ubiquitous, chromosome-encoded toxins with lesser cytolytic activity: the pore forming-toxin Phobalysin C (PhlyC) and the phospholipase-hemolysin PlpV. Special attention deserves the high genetic diversity of this pathogen, with a number of strain-specific features including the cell envelope polysaccharide synthesis clusters. Fish outbreaks are likely caused by multiclonal populations which contain both plasmidless and pPHDD1-harbouring isolates, and not by well-adapted clonal complexes. Still, among such a genetic heterogeneity, it is feasible to identify conserved weak points in the biology of this bacterium: the two-component regulatory system RstAB (CarSR) was found to be necessary for maximal production of virulence factors and its inactivation severely impaired virulence.
Collapse
Affiliation(s)
- Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xosé Manuel Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
6
|
Eissa IAM, Derwa HI, Ismail M, El-Lamie M, Dessouki AA, Elsheshtawy H, Bayoumy EM. Molecular and phenotypic characterization of Photobacterium damselae among some marine fishes in Lake Temsah. Microb Pathog 2017; 114:315-322. [PMID: 29225092 DOI: 10.1016/j.micpath.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022]
Abstract
Photobacterium damselae species are one of the most devastating bacterial pathogens in mariculture worldwide. Some species of Photobacterium are pathogenic for marine animals and human. They are the causative agents of photobacteriosis, formerly known as pasteurellosis. A total of (202) marine fishes of three different species were represented as: seabass (Dicentrarchus labrax), seabream (Sparus aurata) and gray mullet (Mugil capitus) randomly collected from Lake Temsah at Ismailia governorate along the parallel Pelagic road to the lake in the governorate from August 2015 to July 2016. The clinical picture and gross lesions of the diseased fishes were recorded. Isolation and identification of suspected bacteria using traditional and molecular methods. Samples from affected organs were collected for studying the histopathological alterations of these pathogens. Fifty one fishes were found to be infected with Photobacterium damselae subsp. Piscicida. Seabass (Dicentrarchus labrax) was the most infected fish species (23), followed by seabream (Sparus aurata) (18) finally gray mullet (Mugil capitus) was (10). 91fishes were found to be infected with P. damselae subsp. damselae, seabass (Dicentrarchus labrax) was the most infected fish sp. (36), followed by seabream (Sparus aurata) (32), then gray mullet (Mugil capitus) (23). The results indicated that, the total prevalence of P. damselae subsp. piscicida in all examined species (25.24%), the highest seasonal prevalence was recorded in summer season (37.09%) followed by autumn (26%) then spring (20.37%) and winter (11.11%). On the other hand, the total prevalence of P. damselae subsp. damselae in all examined species (45.04%), the highest seasonal prevalence was recorded in summer season (67.74%) followed by autumn (52%) then spring (29.62%) and winter (19.44%). Molecular diagnosis with conventional PCR used to confirm the traditional isolation was applied by using specific primers of two genes (polycapsular saccharide gene and urease C gene). The histopathological studies of naturally infected marine fishes showed severe inflammatory reactions in different organs with accumulation of melanomacrophages and necrosis. The results confirm that P. damselae subspecies damsalea is the most prevalent pathogen between marine fishes, and seabass (Dicentrarchus labrax) was the highly affected marine fishes in this study.
Collapse
Affiliation(s)
- I A M Eissa
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - H I Derwa
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Mona Ismail
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Maather El-Lamie
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Amina A Dessouki
- Pathology Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Hassnaa Elsheshtawy
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Elsayed M Bayoumy
- Hydrobiology Department, National Research Centre, Dokki, Giza, Egypt; Biology Department, Girls Science College, IAU, Dammam, Saudi Arabia.
| |
Collapse
|
7
|
Coinfection by Ureaplasma spp., Photobacterium damselae and an Actinomyces-like microorganism in a bottlenose dolphin (Tursiops truncatus) with pleuropneumonia stranded along the Adriatic coast of Italy. Res Vet Sci 2016; 105:111-4. [PMID: 27033917 DOI: 10.1016/j.rvsc.2016.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/12/2016] [Accepted: 01/29/2016] [Indexed: 11/20/2022]
Abstract
A case of pleuropneumonia is reported in an adult male bottlenose dolphin (Tursiops truncatus) found stranded in 2014 along the Central Adriatic coast of Italy. A severe pyogranulomatous pneumonia and thoracic lymphadenopathy were present at necropsy. Numerous Splendore-Hoeppli bodies were found microscopically scattered throughout the lung. Histochemical evidence of Actinomyces-like organisms was obtained from the pulmonary parenchyma, with a strain of Photobacterium damselae subsp. piscicida and Ureaplasma spp. being also isolated from the same tissue. For the latter, a genome fragment of approximately 1400 bp from the 16s rDNA was amplified and sequenced. BLAST analysis revealed 100% identity with an uncultured Ureaplasma spp. (JQ193826.1).
Collapse
|
8
|
Varello K, Prearo M, Serracca L, Meloni D, Rossini I, Righetti M, Pezzolato M, Fioravanti ML, Ercolini C, Bozzetta E. Granulomatous lesions in a wild mullet population from the eastern Ligurian Sea (Italy): mycobacteriosis vs. pseudotuberculosis. JOURNAL OF FISH DISEASES 2014; 37:553-558. [PMID: 23944162 DOI: 10.1111/jfd.12155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Mycobacterium spp. and Photobacterium damselae subsp. piscicida are recognized as the most frequent causative agents of granulomatous lesions in fish. Although frequent episodes of mycobacterial infections have been reported in wild fish worldwide, only sporadic cases have been documented to date in Italy. To investigate for the presence of lesions referable to mycobacteriosis and to identify the mycobacterial species involved, a total of 159 wild mullets were fished from the eastern coast of the Ligurian Sea, killed and necropsied. Liver and spleen samples were collected from all fish for histopathological and microbiological analyses. Molecular investigations for identification of Photobacterium damselae subsp. piscicida were performed. Gross examination revealed granulomatous lesions in one animal; microscopically, 42.14% of fish displayed granulomas with various histological features, 19.50% resulted positive at Ziehl-Neelsen staining, and were confirmed as mycobacterial lesions by culture. The identified colonies were characterized as M. fortuitum, M. abscessus, M. flavescens, M. chelonae, M. septicum and M. nonchromogenicum. In all, 35% of animals resulted positive for Photobacterium damselae subsp. piscicida. These data suggest widespread mycobacterial infection also by Photobacterium damselae subsp. piscicida infections in wild fish. Moreover, the pathogenicity of some mycobacterial species, previously considered as saprophytic, was demonstrated.
Collapse
Affiliation(s)
- K Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rivas AJ, Lemos ML, Osorio CR. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 2013; 4:283. [PMID: 24093021 PMCID: PMC3782699 DOI: 10.3389/fmicb.2013.00283] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 11/13/2022] Open
Abstract
Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.
Collapse
Affiliation(s)
- Amable J Rivas
- Institute of Aquaculture, University of Santiago de Compostela Santiago de Compostela, Spain
| | | | | |
Collapse
|