1
|
Terashima R, Kimura M, Higashikawa A, Kojima Y, Ichinohe T, Tazaki M, Shibukawa Y. Intracellular Ca 2+ mobilization pathway via bradykinin B 1 receptor activation in rat trigeminal ganglion neurons. J Physiol Sci 2019; 69:199-209. [PMID: 30182285 PMCID: PMC10717581 DOI: 10.1007/s12576-018-0635-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Bradykinin (BK) and its receptors, B1 and B2, in trigeminal ganglion (TG) neurons are involved in the regulation of pain. Recent studies have revealed that B1 receptors are expressed in neonatal rat TG neurons; however, the intracellular signaling pathway following B1 receptor activation remains to be elucidated. To investigate the mechanism by which B1 receptor activation leads to intracellular Ca2+ mobilization, we measured the intracellular free Ca2+ concentration ([Ca2+]i) in primary-cultured TG neurons. The application of Lys-[Des-Arg9]BK (B1 receptor agonist) increased the [Ca2+]i in these TG neurons even in the absence of extracellular Ca2+. Pretreatment with inhibitors of ryanodine receptors or sarco/endoplasmic reticulum Ca2+-ATPase suppressed the increase in Lys-[Des-Arg9]BK-induced [Ca2+]i. The Lys-[Des-Arg9]BK-induced [Ca2+]i increase was unaffected by phospholipase-C inhibitor. B1 receptor activation-induced [Ca2+]i increase was suppressed by phosphodiesterase inhibitor and enhanced by adenylyl cyclase inhibitor. These results suggest that B1 receptor activation suppresses intracellular cAMP production via adenylyl cyclase inhibition and mobilizes intracellular Ca2+ via ryanodine receptors that access intracellular Ca2+ stores.
Collapse
Affiliation(s)
- Reiko Terashima
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, 101-0061, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Asuka Higashikawa
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Yuki Kojima
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
2
|
Karakus E, Halici Z, Albayrak A, Bayir Y, Demirci E, Aydin A, Ozturk-Karagoz B, Cadirci E, Ayan AK, Sahin A, Unal D. Effects of Administration of Amlodipine and Lacidipine on Inflammation-Induced Bone Loss in the Ovariectomized Rat. Inflammation 2016; 39:336-346. [PMID: 26412256 DOI: 10.1007/s10753-015-0254-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study was performed to evaluate the possible protective effect of two calcium channel blocker's "lacidipine (LAC) and amlodipine (AML)" on bone metabolism in an experimental ovariectomized and inflammation-induced osteoporosis rat model (OVXinf). For the purpose of this study, the rats were divided into eight groups, each containing eight rats: sham-operated control (group 1, SH), sham + inflammation (group 2, SHinf), ovariectomy (group 3, OVX), ovariectomy + inflammation (group 4, OVXinf), ovariectomy + LAC 4 mg/kg (group 5, OVX + LAC), ovariectomy + inflammation + LAC 4 mg/kg (group 6, OVXinf + LAC), ovariectomy + AML 5 mg/kg (group 7, OVX + AML), ovariectomy + inflammation + AML 5 mg/kg (group 8, OVXinf + AML). The levels of osteocalcin and osteopontin decreased in OVXinf + LAC and OVXinf + AML groups. The serum levels of TNF-α, IL-1β, and IL-6 were increased significantly in the OVXinf rats compared with the SH group. Gene expression levels of the osteogenic factor runt-related transcription factor 2 (Runx2) and type I collagen 1A1 (Col1A1) significantly decreased in the OVXinf group, when compared with the control group. AML or LAC administrations increased the levels of Runx2 and Col1A1. These results suggest that amlodipine and lacidipine may be a novel therapeutic target for radical osteoporosis treatment in hypertensive patients.
Collapse
Affiliation(s)
- Emre Karakus
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Elif Demirci
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Berna Ozturk-Karagoz
- Department of Pharmacology, Faculty of Pharmacy, Ibrahim Cecen University, Agrı, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arif Kursat Ayan
- Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Sahin
- Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Bkaily G, Avedanian L, Al-Khoury J, Chamoun M, Semaan R, Jubinville-Leblanc C, D’Orléans-Juste P, Jacques D. Nuclear membrane R-type calcium channels mediate cytosolic ET-1-induced increase of nuclear calcium in human vascular smooth muscle cells. Can J Physiol Pharmacol 2015; 93:291-7. [DOI: 10.1139/cjpp-2014-0519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this work was to verify whether, as in the case of the plasma membrane of human vascular smooth muscle cells (hVSMCs), cytosolic ET-1-induced increase of nuclear calcium is mediated via the activation of calcium influx through the steady-state R-type calcium channel. Pharmacological tools to identify the R-type calcium channels, as well as real 3-D confocal microscopy imaging techniques coupled to calcium fluorescent probes, were used to study the effect of cytosolic ET-1 on nuclear calcium in isolated nuclei of human hepatocytes and plasma membrane perforated hVSMCs. Our results showed that pre-treatment with pertussis toxin (PTX) or cholera toxin (CTX) prevented cytosolic ET-1 (10−9 mol/L) from inducing a sustained increase in nuclear calcium. Furthermore, the L-type calcium channel blocker nifedipine did not prevent cytosolic ET-1 from inducing an increase in nuclear calcium, as opposed to the dual L- and R-type calcium channel blocker isradipine (PN200-110) (in the presence of nifedipine). In conclusion, the preventative effect with PTX and CTX, and the absence of an effect with nifedipine, as well as the blockade by isradipine on cytosolic ET-1-induced increase in nuclear calcium, suggest that this nuclear calcium influx in hVSMCs is due to activation of the steady-state R-type calcium channel. The sarcolemmal and nuclear membrane R-type calcium channels in hVSMCs are involved in ET-1 modulation of vascular tone in physiology and pathology.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Levon Avedanian
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Marc Chamoun
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Rana Semaan
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Cynthia Jubinville-Leblanc
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Pedro D’Orléans-Juste
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine – University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
D'Orléans-Juste P, Bkaily G, Rae GA. Endothelin and bradykinin: 'brothers-in-arms' in Chagas vasculopathies? Br J Pharmacol 2012; 165:1330-2. [PMID: 21864312 DOI: 10.1111/j.1476-5381.2011.01636.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reports of Chagas disease are increasing in non-endemic populations across the globe. Apart from vector eradication and prevention efforts by public health organizations, current pharmacological interventions are sparse and show important side effects. In this issue of the BJP, Andrade et al. elegantly demonstrate a new pharmacological paradigm whereby Trypanosoma cruzi host cell invasion requires significant cross-talk between receptors for kinins and endothelins. It is shown, for example, that acting via both ET(A) and ET(B) receptors, endothelin-1 (ET-1) cooperates with the (TLR2/CXCR2/B(2) kinin receptor) complex to activate inflammatory processes in response to invading trypomastigotes. This study by Andrade et al. prompts, however, several important questions, summarized in this Commentary, such as the putative role of chymase-dependent production of ET-1, the contentious protective role of ACE inhibitors in Chagasic patients, the unexplored role of de novo formed B(1) receptors for kinins triggered by cytokines and the putative role of compartmentalized calcium pools in host cell invasion by trypomastigotes.
Collapse
Affiliation(s)
- Pedro D'Orléans-Juste
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | |
Collapse
|
5
|
Zhang M, Fei XW, He YL, Yang G, Mei YA. Bradykinin inhibits the transient outward K+ current in mouse Schwann cells via the cAMP/PKA pathway. Am J Physiol Cell Physiol 2009; 296:C1364-72. [PMID: 19339513 DOI: 10.1152/ajpcell.00014.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin (BK) is an endogenous peptide with diverse biological actions and is considered to be an important mediator of the inflammatory response in both the peripheral and the central nervous systems. BK has attracted recent interest as a potential mediator of K(+) conductance, Cl(-) channels, and Ca(2+)-activated K(+) channels. However, few reports have associated BK with the voltage-gated K(+) current. In this study, we demonstrated that BK suppressed the transient outward potassium current (I(A)) in mouse Schwann cells using whole cell recording techniques. At a concentration of 0.1 muM to 5 muM, BK reversibly inhibited I(A) in a dose-dependent manner with the modulation of steady-state activation and inactivation properties. The effect of BK on I(A) current was abolished after preincubation with a B(2) receptor antagonist but could not be eliminated by B(1) receptor antagonist. Intracellular application of GTP-gammaS induced an irreversible decrease in I(A), and the inhibition of G(s) using NF449 provoked a gradual augmentation in I(A) and eliminated the BK-induced effect on I(A,) while the G(i)/(o) antagonist NF023 did not. The application of forskolin or dibutyryl-cAMP mimicked the inhibitory effect of BK on I(A) and abolished the BK-induced effect on I(A). H-89, an inhibitor of PKA, augmented I(A) amplitude and completely eliminated the BK-induced inhibitory effect on I(A). In contrast, activation of PKC by PMA augmented I(A) amplitude. A cAMP assay revealed that BK significantly increased intracellular cAMP level. It is therefore concluded that BK inhibits the I(A) current in Schwann cells by cAMP/PKA-dependent pathways via activation of the B(2) receptor.
Collapse
Affiliation(s)
- Man Zhang
- Institute of Brain Science, School of Life Sciences and State Key Lab of Medical Neurobiology, Fudan University, Shanghai 200433, P.R. China
| | | | | | | | | |
Collapse
|
6
|
Effects of calcium channel blockers on hyaluronidase-induced capillary vascular permeability. Arch Pharm Res 2008; 31:891-9. [DOI: 10.1007/s12272-001-1243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 11/26/2022]
|
7
|
Ono K, Iijima T. Pathophysiological significance of T-type Ca2+ channels: properties and functional roles of T-type Ca2+ channels in cardiac pacemaking. J Pharmacol Sci 2005; 99:197-204. [PMID: 16272791 DOI: 10.1254/jphs.fmj05002x2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Calcium channels are essential for excitation-contraction coupling and pacemaker activity in cardiac myocytes. While L-type Ca(2+) channels (LCC) have been extensively studied, functional roles of T-type channels (TCC) in native cardiac myocytes are still debatable. TCC are activated at more negative membrane potentials than LCC and therefore facilitate slow diastolic depolarization in sinoatrial node cells. Recent studies showed that selective inhibition of TCC produced a marked slowing of the pacemaker rhythm, indicating that contribution of TCC to cardiac automaticity was relatively larger than what had been speculated in previous studies. To re-evaluate TCC, we measured current density and kinetics of TCC in sinoatrial node cells of various mammalian species. Current density of TCC was larger in mice and guinea pigs than in rabbit and porcine sinoatrial node cells. Interestingly, few or no obvious TCC were recorded in porcine sinoatrial node cells. Furthermore, it was demonstrated that TCC could be enhanced by several vasoactive substances, thereby increasing spontaneous firing rate of sinoatrial node cells. TCC may, at least in part, account for different heart rates among various mammalian species. In addition, TCC might be involved in physiological and/or pathophysiological modulations of the heart rate.
Collapse
Affiliation(s)
- Kyoichi Ono
- Department of Pharmacology, Akita University School of Medicine, Japan.
| | | |
Collapse
|
8
|
Bkaily G, Sculptoreanu A, Wang S, Nader M, Hazzouri KM, Jacques D, Regoli D, D'Orleans-Juste P, Avedanian L. Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells. Peptides 2005; 26:1410-7. [PMID: 16042981 DOI: 10.1016/j.peptides.2005.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effect of angiotensin II (Ang II) on the T- and L-type calcium currents (I(Ca)) in single ventricular heart cells of 18-week-old fetal human and 10-day-old chick embryos was studied using the whole-cell voltage clamp technique. Our results showed that in both, human and chick cardiomyocytes, Ang II (10(-7)M) increased the T-type calcium current and decreased the L-type I(Ca). The effect of Ang II on both types of currents was blocked by the AT1 peptidic antagonist, [Sar1, Ala8] Ang II (2 x 10(-7)M). Protein kinase C activator, phorbol 12,13-dibutyrate, mimicked the effect of Ang II on the T- and L-type calcium currents. These results demonstrate that in fetal human and chick embryo cardiomyocytes Ang II affects the T- and L-type Ca2+ currents differently, and this effect seems to be mediated by the PKC pathway.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy & Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001-12th Avenue North, Sherbrooke, Que., Canada J1H 5N4.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bkaily G, El-Bizri N, Nader M, Hazzouri KM, Riopel J, Jacques D, Regoli D, D'Orleans-Juste P, Gobeil F, Avedanian L. Angiotensin II induced increase in frequency of cytosolic and nuclear calcium waves of heart cells via activation of AT1 and AT2 receptors. Peptides 2005; 26:1418-26. [PMID: 15876474 DOI: 10.1016/j.peptides.2005.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this work is to verify if Angiotensin II (Ang II) affects the frequency of spontaneous cytosolic and nuclear Ca2+ waves in chick embryonic cardiomyocytes and if this effect is mediated via the activation of AT1 and/or AT2 receptors. Using the rapid scan technique of confocal microscopy, we observed that Ang II (10(-8)M) increases the frequency of cytosolic and nuclear Ca2+ waves. This effect was accompanied by a decrease in the amplitude of nuclear Ca2+ waves and an absence of effect on the amplitude of cytosolic Ca2+ waves. The effect of the octapeptide on both frequency and amplitude of the nuclear waves was prevented by the AT1 receptor antagonist L158809. However, blockade of the AT2 receptor using the antagonist PD123319 (10(-7)M) only prevented the effect of Ang II on the frequency of Ca2+ waves. Furthermore, the effect was prevented by both a PKC inhibitor (bisindolylmaleimide) and a PKC activator (phorbol 12,13-dibutyrate). In addition, the Ang II effect was not prevented by the blocker of the pacemaker current If. These results demonstrate that Ang II, via the activation of its receptors AT1 and AT2, affects the frequency of spontaneous Ca2+ waves and this effect seems to be mediated by the PKC pathway.
Collapse
MESH Headings
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin II Type 2 Receptor Blockers
- Animals
- Calcium/antagonists & inhibitors
- Calcium/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chickens
- Cytosol/drug effects
- Cytosol/metabolism
- Dose-Response Relationship, Drug
- Heart Ventricles/drug effects
- Heart Ventricles/embryology
- Imidazoles/pharmacology
- Indoles/pharmacology
- Maleimides/pharmacology
- Microscopy, Confocal/methods
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Phorbol 12,13-Dibutyrate/pharmacology
- Protein Kinase C/drug effects
- Protein Kinase C/metabolism
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/physiology
- Tetrazoles/pharmacology
- Time Factors
- Ventricular Function
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy & Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001-12th Avenue North, Sherbrooke, Que., Canada J1H 5N4.
| | | | | | | | | | | | | | | | | | | |
Collapse
|