1
|
Umeda T, Yokoyama O, Suzuki M, Kaneshige M, Isa T, Nishimura Y. Future spinal reflex is embedded in primary motor cortex output. SCIENCE ADVANCES 2024; 10:eadq4194. [PMID: 39693430 DOI: 10.1126/sciadv.adq4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements. Motor-related cortical areas, predominantly primary motor cortex (M1), encode subsequent afferent activities attributed to forelimb movement. M1 also encodes a subcomponent of muscle activity evoked by these afferent activities, corresponding to spinal reflexes. Furthermore, selective disruption of the afferent pathway specifically reduced this subcomponent of muscle activity, suggesting that M1 output drives muscle activity not only through direct descending pathways but also through the "transafferent" pathway composed of descending plus subsequent spinal reflex pathways. Thus, M1 provides optimal motor output based on an internal forward model that prospectively computes future spinal reflexes.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878502, Japan
| | - Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Miki Kaneshige
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 6068510, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 3320012, Japan
| |
Collapse
|
2
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
3
|
Schnerwitzki D, Englert C, Schmidt M. Adapting the pantograph limb: Differential robustness of fore- and hindlimb kinematics against genetically induced perturbation in the neural control networks and its evolutionary implications. ZOOLOGY 2023; 157:126076. [PMID: 36842298 DOI: 10.1016/j.zool.2023.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The evolutionary transformation of limb morphology to the four-segmented pantograph of therians is among the milestones of mammalian evolution. But, it is still unknown if changes of the mechanical limb function were accompanied by corresponding changes in development and sensorimotor control. The impressive locomotor performance of mammals leaves no doubt about the high integration of pattern formation, neural control and mechanics. But, deviations from normal intra- and interlimb coordination (spatial and temporal) become evident in the presence of perturbations. We induced a perturbation in the development of the neural circuits of the spinal cord of mice (Mus musculus) using a deletion of the Wilms tumor suppressor gene Wt1 in a subpopulation of dI6 interneurons. These interneurons are assumed to participate in the intermuscular coordination within the limb and in left-right-coordination between the limbs. We describe the locomotor kinematics in mice with conditional Wt1 knockout and compare them to mice without Wt1 deletion. Unlike knockout neonates, knockout adult mice do not display severe deviations from normal (=control group) interlimb coordination, but the coordinated protraction and retraction of the limbs is altered. The forelimbs are more affected by deviations from the control than the hindlimbs. This observation appears to reflect a different degree of integration and resistance against the induced perturbation between the limbs. Interestingly, the observed effects are similar to locomotor deficits reported to arise when sensory feedback from proprioceptors or cutaneous receptors is impaired. A putative participation of Wt1 positive dI6 interneurons in sensorimotor integration is therefore considered.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Manuela Schmidt
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Ernst-Haeckel building and Didactics of Biology, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| |
Collapse
|
4
|
Harris CM, Szczecinski NS, Büschges A, Zill SN. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. J Neurophysiol 2022; 128:790-807. [PMID: 36043841 PMCID: PMC9529259 DOI: 10.1152/jn.00285.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic “creep” in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines. NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
5
|
Rasul A, Lorentzen J, Frisk RF, Sinkjær T, Nielsen JB. Contribution of sensory feedback to Soleus muscle activity during voluntary contraction in humans. J Neurophysiol 2022; 127:1147-1158. [PMID: 35320034 DOI: 10.1152/jn.00430.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback contributes to plantar flexor muscle activity during walking, but it is unknown whether this is also the case during non-locomotor movements. Here, we explored the effect of reduction of sensory feedback to ankle plantar flexors during voluntary isometric contractions. 13 adult volunteers were seated with the right leg attached to a foot plate which could be moved in dorsi- or plantarflexion direction by a computer-controlled motor. During static plantar flexion while the plantar flexors were slowly stretched, a sudden plantar flexion caused a decline in Soleus EMG at stretch reflex latency. This decline in EMG remained when transmission from dorsiflexors was blocked. It disappeared following block of transmission from plantar flexors. Imposed plantarflexion failed to produce a similar decline in EMG during static or ramp-and-hold plantar flexion in the absence of slow stretch. Instead, a decline in EMG was observed 15-20 ms later, which disappeared following block of transmission from dorsiflexors. Imposed plantarflexion in the stance phase during walking caused a decline in SOL EMG which in contrast remained following block of transmission from dorsiflexors. These findings imply that the contribution of spinal interneurons to the neural drive to muscles during gait and voluntary movement differs and supports that a locomotion specific spinal network contributes to plantar flexor muscle activity during human walking.
Collapse
Affiliation(s)
- Aqella Rasul
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Rasmus Feld Frisk
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Thomas Sinkjær
- Department of Health Science and Technology. Aalborg University, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
6
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Ryu HX, Kuo AD. An optimality principle for locomotor central pattern generators. Sci Rep 2021; 11:13140. [PMID: 34162903 PMCID: PMC8222298 DOI: 10.1038/s41598-021-91714-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Two types of neural circuits contribute to legged locomotion: central pattern generators (CPGs) that produce rhythmic motor commands (even in the absence of feedback, termed “fictive locomotion”), and reflex circuits driven by sensory feedback. Each circuit alone serves a clear purpose, and the two together are understood to cooperate during normal locomotion. The difficulty is in explaining their relative balance objectively within a control model, as there are infinite combinations that could produce the same nominal motor pattern. Here we propose that optimization in the presence of uncertainty can explain how the circuits should best be combined for locomotion. The key is to re-interpret the CPG in the context of state estimator-based control: an internal model of the limbs that predicts their state, using sensory feedback to optimally balance competing effects of environmental and sensory uncertainties. We demonstrate use of optimally predicted state to drive a simple model of bipedal, dynamic walking, which thus yields minimal energetic cost of transport and best stability. The internal model may be implemented with neural circuitry compatible with classic CPG models, except with neural parameters determined by optimal estimation principles. Fictive locomotion also emerges, but as a side effect of estimator dynamics rather than an explicit internal rhythm. Uncertainty could be key to shaping CPG behavior and governing optimal use of feedback.
Collapse
Affiliation(s)
- Hansol X Ryu
- Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Arthur D Kuo
- Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
8
|
Macaluso R, Embry K, Villarreal DJ, Gregg RD. Parameterizing Human Locomotion Across Quasi-Random Treadmill Perturbations and Inclines. IEEE Trans Neural Syst Rehabil Eng 2021; 29:508-516. [PMID: 33556013 DOI: 10.1109/tnsre.2021.3057877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work has shown that it is possible to use a mechanical phase variable to accurately quantify the progression through a human gait cycle, even in the presence of disturbances. However, mechanical phase variables are highly dependent on the behavior of the body segment from which they are measured, which can change with the human's task or in response to different disturbances. In this study, we compare kinematic parameterization methods based on time, thigh phase angle, and tibia phase angle with motion capture data obtained from ten able-bodied subjects walking at three inclines while experiencing phase-shifting perturbations from a split-belt instrumented treadmill. The belt, direction, and timings of perturbations were quasi-randomly selected to prevent anticipatory action by the subjects and sample different types of perturbations. Statistical analysis revealed that both phase parameterization methods are superior to time parameterization, with thigh phase angle also being superior to tibia phase angle in most cases.
Collapse
|
9
|
Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. Pavlovian control of intraspinal microstimulation to produce over-ground walking. J Neural Eng 2020; 17:036002. [PMID: 32348970 DOI: 10.1088/1741-2552/ab8e8e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuromodulation technologies are increasingly used for improving function after neural injury. To achieve a symbiotic relationship between device and user, the device must augment remaining function, and independently adapt to day-to-day changes in function. The goal of this study was to develop predictive control strategies to produce over-ground walking in a model of hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). APPROACH Eight cats were anaesthetized and placed in a sling over a walkway. The residual function of a hemisection SCI was mimicked by manually moving one hind-limb through the walking cycle. ISMS targeted motor networks in the lumbosacral enlargement to activate muscles in the other, presumably 'paralyzed' limb, using low levels of current (<130 μA). Four people took turns to move the 'intact' limb, generating four different walking styles. Two control strategies, which used ground reaction force and angular velocity information about the manually moved 'intact' limb to control the timing of the transitions of the 'paralyzed' limb through the step cycle, were compared. The first strategy used thresholds on the raw sensor values to initiate transitions. The second strategy used reinforcement learning and Pavlovian control to learn predictions about the sensor values. Thresholds on the predictions were then used to initiate transitions. MAIN RESULTS Both control strategies were able to produce alternating, over-ground walking. Transitions based on raw sensor values required manual tuning of thresholds for each person to produce walking, whereas Pavlovian control did not. Learning occurred quickly during walking: predictions of the sensor signals were learned rapidly, initiating correct transitions after ≤4 steps. Pavlovian control was resilient to different walking styles and different cats, and recovered from induced mistakes during walking. SIGNIFICANCE This work demonstrates, for the first time, that Pavlovian control can augment remaining function and facilitate personalized walking with minimal tuning requirements.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
10
|
Akay T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020; 450:161-167. [PMID: 32422335 DOI: 10.1016/j.neuroscience.2020.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Traditionally, research aimed at the understanding of the sensory control of terrestrial mammalian locomotion has focused on cats as the animal model. But advances in molecular genetics and new methods to record movement in small animals have moved mice into the forefront of locomotor research. In this review article, I will first give an overview of what is known about sensory feedback control of locomotion, mainly emerged from experiments performed on cats. This overview will not be an exhaustive overview, but will rather aim to give a broad picture of what has been learned about the sensory control of locomotion using cats as the animal model. I will then give a brief summary of how the mouse is adding to these insights.
Collapse
Affiliation(s)
- Turgay Akay
- Dalhousie University, Dept. of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Halifax, NS, Canada.
| |
Collapse
|
11
|
Nanivadekar AC, Ayers CA, Gaunt RA, Weber DJ, Fisher LE. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. J Neural Eng 2019; 17:016011. [PMID: 31577993 PMCID: PMC9131467 DOI: 10.1088/1741-2552/ab4a24] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We have shown previously that microstimulation of the lumbar dorsal root ganglia (L5-L7 DRG) using penetrating microelectrodes, selectively recruits distal branches of the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical translation of a DRG somatosensory neural interface, electrodes placed on the epineural surface of the DRG may be a viable path forward. The goal of this study was to evaluate the recruitment properties of epineural electrodes and compare their performance with that of penetrating electrodes. Here, we compare the number of selectively recruited distal nerve branches and the threshold stimulus intensities between penetrating and epineural electrode arrays. APPROACH Antidromically propagating action potentials were recorded from multiple distal branches of the femoral and sciatic nerves in response to epineural stimulation on 11 ganglia in four cats to quantify the selectivity of DRG stimulation. Compound action potentials (CAPs) were recorded using nerve cuff electrodes implanted around up to nine distal branches of the femoral and sciatic nerve trunks. We also tested stimulation selectivity with penetrating microelectrode arrays implanted into ten ganglia in four cats. A binary search was carried out to identify the minimum stimulus intensity that evoked a response at any of the distal cuffs, as well as whether the threshold response selectively occurred in only a single distal nerve branch. MAIN RESULTS Stimulation evoked activity in just a single peripheral nerve through 67% of epineural electrodes (35/52) and through 79% of the penetrating microelectrodes (240/308). The recruitment threshold (median = 9.67 nC/phase) and dynamic range of epineural stimulation (median = 1.01 nC/phase) were significantly higher than penetrating stimulation (0.90 nC/phase and 0.36 nC/phase, respectively). However, the pattern of peripheral nerves recruited for each DRG were similar for stimulation through epineural and penetrating electrodes. SIGNIFICANCE Despite higher recruitment thresholds, epineural stimulation provides comparable selectivity and superior dynamic range to penetrating electrodes. These results suggest that it may be possible to achieve a highly selective neural interface with the DRG without penetrating the epineurium.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Rehabilitation Neural Engineering Laboratories, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213, United States of America. Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States of America
| | | | | | | | | |
Collapse
|
12
|
Schmitz J, Gruhn M, Büschges A. Body side-specific changes in sensorimotor processing of movement feedback in a walking insect. J Neurophysiol 2019; 122:2173-2186. [PMID: 31553676 PMCID: PMC6879953 DOI: 10.1152/jn.00436.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023] Open
Abstract
Feedback from load and movement sensors can modify timing and magnitude of the motor output in the stepping stick insect. One source of feedback is stretch reception by the femoral chordotonal organ (fCO), which encodes such parameters as the femorotibial (FTi) joint angle, the angular velocity, and its acceleration. Stimulation of the fCO causes a postural resistance reflex, during quiescence, and can elicit the opposite, so-called active reaction (AR), which assists ongoing flexion during active movements. In the present study, we investigated the role of fCO feedback for the difference in likelihood of generating ARs on the inside vs. the outside during curve stepping. We analyzed the effects of fCO stimulation on the motor output to the FTi and the neighboring coxa-trochanter and thorax-coxa joints of the middle leg. In inside and outside turns, the probability for ARs increases with increasing starting angle and decreasing stimulus velocity; furthermore, it is independent of the total angular excursion. However, the transition between stance and swing motor activity always occurs after a specific angular excursion, independent of the turning direction. Feedback from the fCO also has an excitatory influence on levator trochanteris motoneurons (MNs) during inside and outside turns, whereas the same feedback affects protractor coxae MNs only during outside steps. Our results suggest joint- and body side-dependent processing of fCO feedback. A shift in gain may be responsible for different AR probabilities between inside and outside turning, whereas the general control mechanism for ARs is unchanged.NEW & NOTEWORTHY We show that parameters of movement feedback from the tibia in an insect during curve walking are processed in a body side-specific manner, and how. From our results it is highly conceivable that the difference in motor response to the feedback supports the body side-specific leg kinematics during turning. Future studies will need to determine the source for the inputs that determine the local changes in sensory-motor processing.
Collapse
Affiliation(s)
- Joscha Schmitz
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Mayer WP, Murray AJ, Brenner-Morton S, Jessell TM, Tourtellotte WG, Akay T. Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice. J Neurophysiol 2018; 120:2484-2497. [PMID: 30133381 DOI: 10.1152/jn.00250.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.
Collapse
Affiliation(s)
- William P Mayer
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada.,Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil
| | - Andrew J Murray
- Sainsbury Wellcome Center for Neural Circuits and Behaviour, University College London , London , United Kingdom
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedar Sinai Medical Center, West Hollywood, California
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
14
|
Schumacher C, Seyfarth A. Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping. Front Comput Neurosci 2017; 11:108. [PMID: 29230172 PMCID: PMC5707192 DOI: 10.3389/fncom.2017.00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map. The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Collapse
Affiliation(s)
- Christian Schumacher
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - André Seyfarth
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
15
|
Zmysłowski W, Cabaj AM, Sławińska U. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth. PLoS One 2017; 12:e0170235. [PMID: 28095499 PMCID: PMC5240973 DOI: 10.1371/journal.pone.0170235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.
Collapse
Affiliation(s)
- Wojciech Zmysłowski
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
- * E-mail:
| | - Anna M. Cabaj
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
16
|
Lyle MA, Prilutsky BI, Gregor RJ, Abelew TA, Nichols TR. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity. J Neurophysiol 2016; 116:1055-67. [PMID: 27306676 DOI: 10.1152/jn.00335.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed.
Collapse
Affiliation(s)
- Mark A Lyle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia;
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert J Gregor
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California; and
| | - Thomas A Abelew
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
17
|
Birn-Jeffery AV, Hubicki CM, Blum Y, Renjewski D, Hurst JW, Daley MA. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain. ACTA ACUST UNITED AC 2015; 217:3786-96. [PMID: 25355848 PMCID: PMC4213177 DOI: 10.1242/jeb.102640] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics.
Collapse
Affiliation(s)
- Aleksandra V Birn-Jeffery
- Structure and Motion Laboratory, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Christian M Hubicki
- Dynamic Robotics Laboratory, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, USA
| | - Yvonne Blum
- Structure and Motion Laboratory, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Daniel Renjewski
- Dynamic Robotics Laboratory, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, USA
| | - Jonathan W Hurst
- Dynamic Robotics Laboratory, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, USA
| | - Monica A Daley
- Structure and Motion Laboratory, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
18
|
Buschmann T, Ewald A, von Twickel A, Büschges A. Controlling legs for locomotion-insights from robotics and neurobiology. BIOINSPIRATION & BIOMIMETICS 2015; 10:041001. [PMID: 26119450 DOI: 10.1088/1748-3190/10/4/041001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.
Collapse
Affiliation(s)
- Thomas Buschmann
- Technische Universität München, Institute of Applied Mechanics, Boltzmannstrasse 15, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
19
|
Macleod CA, Meng L, Conway BA, Porr B. Reflex control of robotic gait using human walking data. PLoS One 2014; 9:e109959. [PMID: 25347544 PMCID: PMC4210155 DOI: 10.1371/journal.pone.0109959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/08/2014] [Indexed: 11/23/2022] Open
Abstract
Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the retraining of a functional gait following neurological injuries such as spinal cord injury (SCI). Bipedal robots allow us to investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms. Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot's stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle activity (EMG) in human subjects during walking and from this data created filter functions transferring the sensory data into motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact information into muscle activation signals. Our results show a causal relationship between ground contact information from the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining of an efficient and effective gait with potential applications in SCI rehabilitation.
Collapse
Affiliation(s)
- Catherine A. Macleod
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland
| | - Lin Meng
- Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, Scotland
| | - Bernard A. Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland
| | - Bernd Porr
- Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
20
|
The association between physical characteristics of the ankle joint and the mobility performance in elderly people with type 2 diabetes mellitus. Arch Gerontol Geriatr 2014; 59:346-52. [DOI: 10.1016/j.archger.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/26/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022]
|
21
|
Layne CS, Chelette AM, Pourmoghaddam A. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking. Somatosens Mot Res 2014; 32:31-8. [PMID: 25162146 DOI: 10.3109/08990220.2014.949007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been proposed that proprioceptive input is essential to the development of a locomotor body schema that is used to guide the assembly of successful walking. Proprioceptive information is used to signal the need for, and promotion of, locomotor adaptation in response to environmental or internal modifications. The purpose of this investigation was to determine if tendon vibration applied to either the hamstrings or quadriceps of participants experiencing split-belt treadmill walking modified lower limb kinematics during the early adaptation period. Modifications in the adaptive process in response to vibration would suggest that the sensory-motor system had been unsuccessful in down weighting the disruptive proprioceptive input resulting from vibration. Ten participants experienced split-belt walking, with and without vibration, while gait kinematics were obtained with a 12-camera collection system. Bilateral hip, knee, and ankle joint angles were calculated and the first five strides after the split were averaged for each subject to create joint angle waveforms for each of the assessed joints, for each experimental condition. The intralimb variables of stride length, percent stance time, and relative timing between various combinations of peak joint angles were assessed using repeated measures MANOVA. Results indicate that vibration had very little impact on the split-belt walking adaptive process, although quadriceps vibration did significantly reduce percent stance time by 1.78% relative to the no vibration condition. The data suggest that the perceptual-motor system was able to down weight the disrupted proprioceptive input such that the locomotor body schema was able to effectively manage the lower limb patterns of motion necessary to adapt to the changing belt speed. Complementary explanations for the current findings are also discussed.
Collapse
Affiliation(s)
- Charles S Layne
- Department of Health and Human Performance, University of Houston , Houston, Texas , USA
| | | | | |
Collapse
|
22
|
Sylos-Labini F, Ivanenko YP, MacLellan MJ, Cappellini G, Poppele RE, Lacquaniti F. Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One 2014; 9:e90775. [PMID: 24608249 PMCID: PMC3946538 DOI: 10.1371/journal.pone.0090775] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.
Collapse
Affiliation(s)
- Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Yuri P. Ivanenko
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | - Michael J. MacLellan
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Louisiana State University, School of Kinesiology, Baton Rouge, Louisiana, United States of America
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Richard E. Poppele
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Gregg RD, Rouse EJ, Hargrove LJ, Sensinger JW. Evidence for a time-invariant phase variable in human ankle control. PLoS One 2014; 9:e89163. [PMID: 24558485 PMCID: PMC3928429 DOI: 10.1371/journal.pone.0089163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.
Collapse
Affiliation(s)
- Robert D. Gregg
- Departments of Mechanical Engineering and Bioengineering, University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail:
| | - Elliott J. Rouse
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Levi J. Hargrove
- Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States of America
| | - Jonathon W. Sensinger
- Institute of Biomedical Engineering and Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
24
|
The regulation of limb stiffness in the context of locomotor tasks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:41-54. [PMID: 25330884 PMCID: PMC9806734 DOI: 10.1007/978-1-4939-1338-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Locomotion on ramped surfaces requires modulation of both pattern generating circuits and limb stiffness. In order to meet the mechanical demands of locomotion under these conditions, muscular activation patterns must correspond to the appropriate functions, whether the muscles are serving as force generators or brakes. Limb stiffness is a critical mechanical property that determines how the body interacts with the environment, and is regulated by both intrinsic and neural mechanisms. We have recently investigated how pattern generation, stiffness and proprioceptive feedback are modulated in a task specific way using the decerebrate cat preparation. Our results confirm previous research using intact animals that during level and upslope walking, hip and ankle extensors are recruited for propulsion during stance. During downslope walking, hip extensors are inhibited and hip flexors are recruited during stance to provide the needed braking action. Our new data further show that endpoint stiffness of the limb is correspondingly reduced for walking down a slope, and that the reduction in stiffness is likely due to an increase in inhibitory force feedback. Our results further suggest that a body orientation signal derived from vestibular and neck proprioceptive information is responsible for the required muscular activation patterns as well as a reduction in limb stiffness. This increased compliance is consistent with the function of the distal limb to cushion the impact during the braking action of the antigravity musculature.
Collapse
|
25
|
Afferent control of walking: are there distinct deficits associated to loss of fibres of different diameter? Clin Neurophysiol 2013; 125:327-35. [PMID: 23948160 DOI: 10.1016/j.clinph.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To compare the gait pattern in patients affected by different types of neuropathy. METHODS We recruited healthy subjects (HS, n=38), patients with Charcot-Marie-Tooth disease type 1A (CMT1A) (n=10) and patients with diabetic neuropathy (DNP) (n=12). Neuropathy impairment score and neuropathy score were assessed. Body sway during quiet stance, and spatio-temporal gait parameters were recorded. RESULTS Most patients had reduced or absent tendon-tap reflexes. Strength of foot dorsiflexor muscles (p<0.05) and conduction velocity (CV) of leg nerves (p<0.0001) were more impaired in CMT1A than DNP, whereas joint-position sense was more affected (p<0.05) in DNP. Body sway while standing was larger in DNP compared to CMT1A and HS (p<0.01 and p<0.0001 respectively). During gait, the distribution of foot sole contact pressure was abnormal in CMT1A (p<0.05) but not in DNP. Velocity and step length were decreased, and foot yaw angle at foot flat increased, in DNP with respect to CMT1A and HS (both variables, p<0.001). Gait velocity and step length were decreased (p<0.005) also in CMT1A, but to a smaller extent than in DNP, so that the difference between patient groups was significant (p<0.0005). Duration of the double support was protracted in DNP compared to CMT1A and HS (p<0.0005). For DNP only, velocity of gait and duration of single support were correlated (p<0.05) both to sway path and lower limb muscle strength. CONCLUSIONS Changes in both body sway and stance phase of gait were larger in DNP than CMT1A, indicating more impaired static and dynamic control of balance when neuropathy affects the small in addition to the large afferent fibres. Diminished somatosensory input from the smaller fibres rather than muscle weakness or foot deformity plays a critical role in the modulation of the support phase of gait. SIGNIFICANCE The analysis of balance and gait in patients with neuropathy can offer a tool for understanding the nature and functional impact of the neuropathy and should be included in their functional evaluation.
Collapse
|
26
|
See PA, de Leon RD. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates. J Neurophysiol 2013; 110:760-7. [PMID: 23678012 DOI: 10.1152/jn.01099.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Loading on the limbs has a powerful influence on locomotion. In the present study, we examined whether robotic-enhanced loading during treadmill training improved locomotor recovery in rats that were spinally transected as neonates. A robotic device applied a force on the ankle of the hindlimb while the rats performed bipedal stepping on a treadmill. The robotic force enhanced loading during the stance phase of the step cycle. One group of spinally transected rats received 4 wk of bipedal treadmill training with robotic loading while another group received 4 wk of bipedal treadmill training but without robotic loading. The two groups exhibited similar stepping performance during baseline tests of bipedal treadmill stepping. However, after 4 wk, the spinally transected rats that received bipedal treadmill training with robotic loading performed significantly more weight-bearing steps than the bipedal treadmill training only group. Bipedal treadmill training with robotic loading enhanced the ankle trajectory and ankle velocity during the step cycle. Based on immunohistochemical analyses, the expression of the presynaptic marker, synaptophysin, was significantly greater in the ventral horn of the lumbar spinal cord of the rats that received bipedal treadmill training with robotic loading. These findings suggested that robotic loading during bipedal treadmill training improved the ability of the lumbar spinal cord to generate stepping. The results have implications for the use of robotic-enhanced gait training therapies that encourage motor learning after spinal cord injury.
Collapse
Affiliation(s)
- Pamela Anne See
- School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA 90032-8162, USA
| | | |
Collapse
|
27
|
Arazpour M, Tajik HR, Aminian G, Bani MA, Ghomshe FT, Hutchins SW. Comparison of the effects of solid versus hinged ankle foot orthoses on select temporal gait parameters in patients with incomplete spinal cord injury during treadmill walking. Prosthet Orthot Int 2013; 37:70-5. [PMID: 22751217 DOI: 10.1177/0309364612448511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ankle foot orthoses (AFOs) are usually used for patients with incomplete spinal cord injury (ISCI) to provide support in walking. OBJECTIVES The aim of this study was to compare the effect of AFOs, with and without ankle hinges, on specific gait parameters during treadmill training by subjects with ISCI. STUDY DESIGN Quasi-experimental. METHODS Five patients with ISCI at the thoracic level participated in this study. Gait evaluation was performed when walking 1) barefoot 2) wearing a solid AFO and 3) wearing a hinged AFO. RESULTS The mean step length when walking barefoot was 26.3 ± 16.37 cm compared to 31.3 ± 17.27 cm with a solid AFO and 28.5 ± 15.86 cm with a hinged AFO. The mean cadence for walking barefoot was 61.59 ± 25.65 steps/min. compared to 50.94 ± 22.36 steps/min. with a solid AFO and 56.25 ± 24.44 steps/min with a hinged AFO. Significant differences in cadence and step length during walking were only demonstrated between the barefoot condition and when wearing a solid AFO. Significant difference was not observed between conditions in mean of ankle range of motion. CONCLUSION The solid AFO was the only condition which improved cadence and step length in patients during ISCI gait training. Clinical relevance A solid AFO could be used permanently to compensate for impaired ankle function or it could be used while retraining stepping.
Collapse
Affiliation(s)
- Mokhtar Arazpour
- University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
28
|
Hatz K, Mombaur K, Donelan JM. Control of ankle extensor muscle activity in walking cats. J Neurophysiol 2012; 108:2785-93. [PMID: 22933727 DOI: 10.1152/jn.00944.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our objective was to gain insight into the relative importance of feedforward control and different proprioceptive feedback pathways to ongoing ankle extensor activity during walking in the conscious cat. We asked whether the modulation of stance phase muscle activity is due primarily to proprioceptive feedback and whether the same proprioceptive gains and feedforward commands can automatically generate the muscle activity required for changes in walking slope. To test these hypotheses, we analyzed previously collected muscle activity and mechanics data from cats with an isolated medial gastrocnemius muscle walking along a sloped pegway. Models of proprioceptor dynamics predicted afferent activity from the measured muscle mechanics. We modeled muscle activity as the weighted sum of the activity predicted from the different proprioceptive pathways and a simple model of central drive. We determined the unknown model parameters using optimization procedures that minimized the error between the predicted and measured muscle activity. We found that the modulation of muscle activity within the stance phase and across walking slopes is indeed well described by neural control that employs constant central drive and constant proprioceptive feedback gains. Furthermore, it is force feedback from Ib afferents that is primarily responsible for modulating muscle activity; group II afferent feedback makes a small contribution to tonic activity, and Ia afferent feedback makes no contribution. Force feedback combined with tonic central drive appears to provide a simple control mechanism for automatically compensating for changes in terrain without requiring different commands from the brain or even modification of central nervous system gains.
Collapse
Affiliation(s)
- Kathrin Hatz
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Lajoie K, Bloomfield LW, Nelson FJ, Suh JJ, Marigold DS. The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle. J Neurophysiol 2012; 107:2283-93. [PMID: 22298832 DOI: 10.1152/jn.00756.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stepping over obstacles requires vision to guide the leading leg, but direct visual information is not available to guide the trailing leg. The neural mechanisms for establishing a stored obstacle representation and thus facilitating the trail leg trajectory in humans are unknown. Twenty-four subjects participated in one of three experiments, which were designed to investigate the contribution of visual, proprioceptive, and efference copy signals. Subjects stepped over an obstacle with their lead leg, stopped, and straddled the obstacle for a delay period before stepping over it with their trail leg while toe elevation was recorded. Subsequently, we calculated maximum toe elevation and toe clearance. First, we found that subjects could accurately scale trail leg toe elevation and clearance, despite straddling an obstacle for up to 2 min, similar to quadrupeds. Second, we found that when the lead leg was passively moved over an obstacle (eliminating an efference copy signal and altering proprioception) without vision, trail leg toe elevation and clearance were reduced, and variability increased compared with when subjects actively moved their lead leg. Trail leg toe measures returned to normal when vision was provided during the passive manipulation. Finally, we found that altering lead leg proprioceptive feedback by adding mass to the ankle had no effect on trail leg toe measures. Taken together, our results suggest that humans can store a neural representation of obstacle properties for extended periods of time and that vision appears to be sufficient in this process to guide trail leg trajectory.
Collapse
Affiliation(s)
- Kim Lajoie
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
30
|
Zill SN, Büschges A, Schmitz J. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:851-67. [PMID: 21544617 DOI: 10.1007/s00359-011-0647-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/17/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
Detection of force increases and decreases is important in motor control. Experiments were performed to characterize the structure and responses of tibial campaniform sensilla, receptors that encode forces through cuticular strains, in the middle leg of the stick insect (Carausius morosus). The sensilla consist of distinct subgroups. Group 6A sensilla are located 0.3 mm distal to the femoro-tibial joint and have oval shaped cuticular caps. Group 6B receptors are 1 mm distal to the joint and have round caps. All sensilla show directional, phasico-tonic responses to forces applied to the tibia in the plane of joint movement. Group 6B sensilla respond to force increases in the direction of joint extension while Group 6A receptors discharge when those forces decrease. Forces applied in the direction of joint flexion produce the reverse pattern of sensory discharge. All receptors accurately encode the rate of change of force increments and decrements. Contractions of tibial muscles also produce selective, directional sensory discharges. The subgroups differ in their reflex effects: Group 6B receptors excite and Group 6A sensilla inhibit tibial extensor and trochanteral depressor motoneurons. The tibial campaniform sensilla can, therefore, encode force increases or decreases and aid in adapting motor outputs to changes in load.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | | | | |
Collapse
|
31
|
Gordon KE, Wu M, Kahn JH, Schmit BD. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury. J Neurophysiol 2010; 104:1325-38. [PMID: 20573970 DOI: 10.1152/jn.00604.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.
Collapse
Affiliation(s)
- Keith E Gordon
- Sensory Motor Performance Program, Rehabilitation Inst. of Chicago, 345 E. Superior St., Rm. 1406, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
32
|
af Klint R, Cronin NJ, Ishikawa M, Sinkjaer T, Grey MJ. Afferent Contribution to Locomotor Muscle Activity During Unconstrained Overground Human Walking: An Analysis of Triceps Surae Muscle Fascicles. J Neurophysiol 2010; 103:1262-74. [DOI: 10.1152/jn.00852.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plantar flexor series elasticity can be used to dissociate muscle–fascicle and muscle–tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to ±3° in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.
Collapse
Affiliation(s)
- R. af Klint
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
| | - N. J. Cronin
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - M. Ishikawa
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
- Osaka University of Health and Sport Sciences, Osaka, Japan
| | - T. Sinkjaer
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Danish National Research Foundation
| | - M. J. Grey
- Department of Exercise and Sport Sciences and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Frigon A, Sirois J, Gossard JP. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010; 103:1591-605. [PMID: 20089809 DOI: 10.1152/jn.01028.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hip position and loading of limb extensors are major sensory cues for the initiation and duration of different phases during walking. Although these inputs have pathways projecting to the locomotor rhythm generator, their effects may vary in different parts of the locomotor cycle. In the present study, the plantaris (Pl), sartorius (Sart), rectus femoris (RF), and caudal gluteal (cGlu) nerves were stimulated at group I and/or group II strength during spontaneous fictive locomotion in 16 adult decerebrate cats. These nerves supply muscles that extend the ankle (Pl), flex the hip (Sart, RF), or extend the hip (cGlu). Stimuli were given at six epochs of the locomotor cycle to evaluate when they access the rhythm generator. Group I afferents from Pl nerve always reset the locomotor rhythm; stimulation during extension prolonged cycle period and extension phase duration, while stimulation during flexion terminated flexion and initiated extension. On the other hand, stimulating RF and cGlu nerves only produced significant effects on the rhythm in precise epochs, particularly during mid-flexion and/or mid- to late extension. Stimulating the Sart nerve produced complex effects on the rhythm that were not distributed evenly to all extensor motor pools. The most consistent effect was reduced flexion phase duration with stimulation during flexion, particularly at group II strength, and prolongation of the extension phase but only in late extension. That hip muscle afferents reset the rhythm in only specific epochs of the locomotor cycle suggests that the rhythm generator operates with several subdivisions to determine phase and cycle durations.
Collapse
Affiliation(s)
- Alain Frigon
- Groupe de Recherche sur le Système Nerveux Central des Fonds de la Recherche en Santé du Québec, Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
34
|
Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS. Tonic Central and Sensory Stimuli Facilitate Involuntary Air-Stepping in Humans. J Neurophysiol 2009; 101:2847-58. [DOI: 10.1152/jn.90895.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Air-stepping can be used as a model for investigating rhythmogenesis and its interaction with sensory input. Here we show that it is possible to entrain involuntary rhythmic movement patterns in healthy humans by using different kinds of stimulation techniques. The subjects lay on their sides with one or both legs suspended, allowing low-friction horizontal rotation of the limb joints. To evoke involuntary stepping of the suspended leg, either we used continuous muscle vibration, electrical stimulation of the superficial peroneal or sural nerves, the Jendrassik maneuver, or we exploited the postcontraction state of neuronal networks (Kohnstamm phenomenon). The common feature across all stimulations was that they were tonic. Air-stepping could be elicited by most techniques in about 50% of subjects and involved prominent movements at the hip and the knee joint (∼40–70°). Typically, however, the ankle joint was not involved. Minimal loading forces (4–25 N) applied constantly to the sole (using a long elastic cord) induced noticeable (∼5–20°) ankle-joint-angle movements. The aftereffect of a voluntary long-lasting (30-s) contraction in the leg muscles featured alternating rhythmic leg movements that lasted for about 20–40 s, corresponding roughly to a typical duration of the postcontraction activity in static conditions. The Jendrassik maneuver per se did not evoke air-stepping. Nevertheless, it significantly prolonged rhythmic leg movements initiated manually by an experimenter or by a short (5-s) period of muscle vibration. Air-stepping of one leg could be evoked in both forward and backward directions with frequent spontaneous transitions, whereas involuntary alternating two-legged movements were more stable (no transitions). The hypothetical role of tonic influences, contact forces, and bilateral coordination in rhythmogenesis is discussed. The results overall demonstrated that nonspecific tonic drive may cause air-stepping and the characteristics and stability of the evoked pattern depended on the sensory input.
Collapse
|
35
|
af Klint R, Nielsen JB, Sinkjaer T, Grey MJ. Sudden Drop in Ground Support Produces Force-Related Unload Response in Human Overground Walking. J Neurophysiol 2009; 101:1705-12. [DOI: 10.1152/jn.91175.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans maneuver easily over uneven terrain. To maintain smooth and efficient gait the motor system needs to adapt the locomotor output to the walking environment. In the present study we investigate the role of sensory feedback in adjusting the soleus muscle activity during overground walking in 19 healthy volunteers. Subjects walked unrestrained over a hydraulically actuated platform. On random trials the platform was accelerated downward at 0.8 g, unloading the plantar flexor muscles in midstance or late stance. The drop of the platform resulted in a significant depression of the soleus muscle activity of −17.9% (SD 2) and −21.4% (SD 2), with an onset latency of 49 ms (SD 1) and 45 ms (SD 1) in midstance and late stance, respectively. Input to the vestibular apparatus (i.e., the head acceleration) occurred at a latency 10.0 ms (SD 2.4) following the drop and ankle dorsiflexion velocity was decreased starting 22 ms (SD 15) after the drop. To investigate the role of length- and velocity-sensitive afferents on the depression in soleus muscle activity, the ankle rotation was arrested by using an ankle foot orthotic as the platform was dropped. Preventing the ankle movement did not significantly change the soleus depression in late stance [−18.2% (SD 15)], whereas the depression in midstance was removed [+4.9% (SD 13)]. It is concluded that force feedback from ankle extensors increases the locomotor output through positive feedback in late stance. In midstance the effect of force feedback was not observed, suggesting that spindle afferents may have a more significant effect on the output during this phase of the step cycle.
Collapse
|
36
|
Abstract
Many animals rely on vision for navigating through complex environments and for avoiding specific obstacles during locomotion. Navigation and obstacle avoidance are tasks that depend on gathering information about the environment by vision and using this information at later times to guide limb and body movements. Here we review studies demonstrating the use of short-term visual memory during walking in humans and cats. Our own investigations have demonstrated that cats have the ability to retain a memory of an obstacle they have stepped over with the forelegs for many minutes and to use this memory to guide stepping of the hindlegs to avoid the remembered obstacle. A brain region that may be critically involved in the retention of memories of the location of obstacles is the posterior parietal cortex. Recordings from neurons in area 5 in the posterior parietal cortex in freely walking cats have revealed the existence of neurons whose activity is strongly correlated with the location of an obstacle relative to the body. How these neurons might be used to regulate motor commands remains to be established. We believe that studies on obstacle avoidance in walking cats have the potential to significantly advance our understanding of visuo-motor transformations. Current knowledge about the brain regions and pathways underlying visuo-motor transformations during walking are reviewed.
Collapse
|
37
|
Donelan JM, McVea DA, Pearson KG. Force Regulation of Ankle Extensor Muscle Activity in Freely Walking Cats. J Neurophysiol 2009; 101:360-71. [DOI: 10.1152/jn.90918.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To gain insight into the relative importance of force feedback to ongoing ankle extensor activity during walking in the conscious cat, we isolated the medial gastrocnemius muscle (MG) by denervating the other ankle extensors and measured the magnitude of its activity at different muscle lengths, velocities, and forces accomplished by having the animals walk up and down a sloped pegway. Mathematical models of proprioceptor dynamics predicted afferent activity and revealed that the changes in muscle activity under our experimental conditions were strongly correlated with Ib activity and not consistently associated with changes in Ia or group II activity. This allowed us to determine the gains within the force feedback pathway using a simple model of the neuromuscular system and the measured relationship between MG activity and force. Loop gain increased with muscle length due to the intrinsic force–length property of muscle. The gain of the pathway that converts muscle force to motoneuron depolarization was independent of length. To better test for a causal relationship between modulation of force feedback and changes in muscle activity, a second set of experiments was performed in which the MG muscle was perturbed during ground contact of the hind foot by dropping or lifting the peg underfoot. Collectively, these investigations support a causal role for force feedback and indicate that about 30% of the total muscle activity is due to force feedback during level walking. Force feedback's role increases during upslope walking and decreases during downslope walking, providing a simple mechanism for compensating for changes in terrain.
Collapse
|
38
|
af Klint R, Nielsen JB, Cole J, Sinkjaer T, Grey MJ. Within-step modulation of leg muscle activity by afferent feedback in human walking. J Physiol 2008; 586:4643-8. [PMID: 18669536 DOI: 10.1113/jphysiol.2008.155002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae muscle activation was assessed during stance as the platform was set to different inclinations (+/-3 deg, +/-2 deg and 0 deg rotation in a parasagittal plane about the ankle). Normalized triceps surae muscle activity was significantly increased when the platform was inclined (2 deg: 0.153 +/- 0.051; 3 deg: 0.156 +/- 0.053) and significantly decreased when the platform was declined (-3 deg: 0.133 +/- 0.048; -2 deg: 0.132 +/- 0.049) compared with level walking (0.141 +/- 0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception and touch sensation from the neck down. In contrast with healthy subjects, no muscle activation changes were observed in the deafferented subject. Our results demonstrate that the ability to compensate for small irregularities in the ground surface relies on automatic within-step sensory feedback regulation rather than conscious predictive control.
Collapse
Affiliation(s)
- Richard af Klint
- Department of Health Science and Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
39
|
Abstract
The importance of the in vivo dynamic nature of the circuitries within the spinal cord that generate locomotion is becoming increasingly evident. We examined the characteristics of hindlimb EMG activity evoked in response to epidural stimulation at the S1 spinal cord segment in complete midthoracic spinal cord-transected rats at different stages of postlesion recovery. A progressive and phase-dependent modulation of monosynaptic (middle) and long-latency (late) stimulation-evoked EMG responses was observed throughout the step cycle. During the first 3 weeks after injury, the amplitude of the middle response was potentiated during the EMG bursts, whereas after 4 weeks, both the middle and late responses were phase-dependently modulated. The middle- and late-response magnitudes were closely linked to the amplitude and duration of the EMG bursts during locomotion facilitated by epidural stimulation. The optimum stimulation frequency that maintained consistent activity of the long-latency responses ranged from 40 to 60 Hz, whereas the short-latency responses were consistent from 5 to 130 Hz. These data demonstrate that both middle and late evoked potentials within a motor pool are strictly gated during in vivo bipedal stepping as a function of the general excitability of the motor pool and, thus, as a function of the phase of the step cycle. These data demonstrate that spinal cord epidural stimulation can facilitate locomotion in a time-dependent manner after lesion. The long-latency responses to epidural stimulation are correlated with the recovery of weight-bearing bipedal locomotion and may reflect activation of interneuronal central pattern-generating circuits.
Collapse
|
40
|
Pelc EH, Daley MA, Ferris DP. Resonant hopping of a robot controlled by an artificial neural oscillator. BIOINSPIRATION & BIOMIMETICS 2008; 3:026001. [PMID: 18369282 DOI: 10.1088/1748-3182/3/2/026001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The bouncing gaits of terrestrial animals (hopping, running, trotting) can be modeled as a hybrid dynamic system, with spring-mass dynamics during stance and ballistic motion during the aerial phase. We used a simple hopping robot controlled by an artificial neural oscillator to test the ability of the neural oscillator to adaptively drive this hybrid dynamic system. The robot had a single joint, actuated by an artificial pneumatic muscle in series with a tendon spring. We examined how the oscillator-robot system responded to variation in two neural control parameters: descending neural drive and neuromuscular gain. We also tested the ability of the oscillator-robot system to adapt to variations in mechanical properties by changing the series and parallel spring stiffnesses. Across a 100-fold variation in both supraspinal gain and muscle gain, hopping frequency changed by less than 10%. The neural oscillator consistently drove the system at the resonant half-period for the stance phase, and adapted to a new resonant half-period when the muscle series and parallel stiffnesses were altered. Passive cycling of elastic energy in the tendon accounted for 70-79% of the mechanical work done during each hop cycle. Our results demonstrate that hopping dynamics were largely determined by the intrinsic properties of the mechanical system, not the specific choice of neural oscillator parameters. The findings provide the first evidence that an artificial neural oscillator will drive a hybrid dynamic system at partial resonance.
Collapse
Affiliation(s)
- Evan H Pelc
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
41
|
McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. BRAIN RESEARCH REVIEWS 2008; 57:134-46. [PMID: 17936363 PMCID: PMC2214837 DOI: 10.1016/j.brainresrev.2007.08.006] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/19/2022]
Abstract
Central pattern generators (CPGs) located in the spinal cord produce the coordinated activation of flexor and extensor motoneurons during locomotion. Previously proposed architectures for the spinal locomotor CPG have included the classical half-center oscillator and the unit burst generator (UBG) comprised of multiple coupled oscillators. We have recently proposed another organization in which a two-level CPG has a common rhythm generator (RG) that controls the operation of the pattern formation (PF) circuitry responsible for motoneuron activation. These architectures are discussed in relation to recent data obtained during fictive locomotion in the decerebrate cat. The data show that the CPG can maintain the period and phase of locomotor oscillations both during spontaneous deletions of motoneuron activity and during sensory stimulation affecting motoneuron activity throughout the limb. The proposed two-level CPG organization has been investigated with a computational model which incorporates interactions between the CPG, spinal circuits and afferent inputs. The model includes interacting populations of spinal interneurons and motoneurons modeled in the Hodgkin-Huxley style. Our simulations demonstrate that a relatively simple CPG with separate RG and PF networks can realistically reproduce many experimental phenomena including spontaneous deletions of motoneuron activity and a variety of effects of afferent stimulation. The model suggests plausible explanations for a number of features of real CPG operation that would be difficult to explain in the framework of the classical single-level CPG organization. Some modeling predictions and directions for further studies of locomotor CPG organization are discussed.
Collapse
Affiliation(s)
- David A. McCrea
- Spinal Cord Research Centre and Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 3J7, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
42
|
Vertical perturbations of human gait: organisation and adaptation of leg muscle responses. Exp Brain Res 2007; 186:123-30. [PMID: 18305933 DOI: 10.1007/s00221-007-1215-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
During the last several years, evidence has arisen that the neuronal control of human locomotion depends on feedback from load receptors. The aim of the present study was to determine the effects and the course of sudden and unexpected changes in body load (vertical perturbations) on leg muscle activity patterns during walking on a treadmill. Twenty-two healthy subjects walking with 25% body weight support (BWS) were repetitively and randomly loaded to 5% or unloaded to 45% BWS during left mid-stance. At the new level of BWS, the subjects performed 3-11 steps before returning to 25% BWS (base level). EMG activity of upper and lower leg muscles was recorded from both sides. The bilateral leg muscle activity pattern changed following perturbations in the lower leg muscles and the net effect of the vertical perturbations showed onset latencies with a range of 90-105 ms. Body loading enhanced while unloading diminished the magnitude of ipsilateral extensor EMG amplitude, compared to walking at base level. Contralateral leg flexor burst activity was shortened following loading and prolonged following unloading perturbation while flexor EMG amplitude was unchanged. A general decrease in EMG amplitudes occurred during the course of the experiment. This is assumed to be due to adaptation. Only the muscles directly activated by the perturbations did not significantly change EMG amplitude. This is assumed to be due to the required compensation of the perturbations by polysynaptic spinal reflexes released following the perturbations. The findings underline the importance of load receptor input for the control of locomotion.
Collapse
|
43
|
Pearson KG. Role of sensory feedback in the control of stance duration in walking cats. ACTA ACUST UNITED AC 2007; 57:222-7. [PMID: 17761295 DOI: 10.1016/j.brainresrev.2007.06.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/17/2007] [Indexed: 11/21/2022]
Abstract
The rate of stepping in the hind legs of chronic spinal and decerebrate cats adapts to the speed of the treadmill on which the animals walk. This adaptive behavior depends on sensory signals generated near the end of stance phase controlling the transition from stance to swing. Two sensory signals have been identified to have this role: one from afferents activated by hip extension, most likely arising from muscle spindles in hip flexor muscles, and the other from group Ib afferents from Golgi tendon organs in the ankle extensor muscles. The relative importance of these two signals in controlling the stance to swing transition differs in chronic spinal cats and in decerebrate cats. Activation of hip afferents is necessary for controlling the transition in chronic spinal cats but not in decerebrate cats, while reduction in activity in group Ib afferents from GTOs is the primary factor controlling the transition in decerebrate cats. Possible mechanisms for this difference are discussed. The extent to which these two sensory signals control the stance to swing transition in normal walking cats is unknown, but it is likely that both could play an important role when animals are walking in a variable environment.
Collapse
Affiliation(s)
- K G Pearson
- Department of Physiology, University of Alberta, Edmonton, Canada T6G 2H7.
| |
Collapse
|
44
|
Windhorst U. Muscle proprioceptive feedback and spinal networks. Brain Res Bull 2007; 73:155-202. [PMID: 17562384 DOI: 10.1016/j.brainresbull.2007.03.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 12/19/2022]
Abstract
This review revolves primarily around segmental feedback systems established by muscle spindle and Golgi tendon organ afferents, as well as spinal recurrent inhibition via Renshaw cells. These networks are considered as to their potential contributions to the following functions: (i) generation of anti-gravity thrust during quiet upright stance and the stance phase of locomotion; (ii) timing of locomotor phases; (iii) linearization and correction for muscle nonlinearities; (iv) compensation for muscle lever-arm variations; (v) stabilization of inherently unstable systems; (vi) compensation for muscle fatigue; (vii) synergy formation; (viii) selection of appropriate responses to perturbations; (ix) correction for intersegmental interaction forces; (x) sensory-motor transformations; (xi) plasticity and motor learning. The scope will at times extend beyond the narrow confines of spinal circuits in order to integrate them into wider contexts and concepts.
Collapse
Affiliation(s)
- U Windhorst
- Center for Physiology and Pathophysiology, University of Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany.
| |
Collapse
|
45
|
Keller BR, Duke ER, Amer AS, Zill SN. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:881-91. [PMID: 17541783 DOI: 10.1007/s00359-007-0241-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 05/06/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Decreases in load are important cues in the control of posture and walking. We recorded activities of the tibial campaniform sensilla, receptors that monitor forces as strains in the exoskeleton, in the middle legs of freely moving cockroaches. Small magnets were attached to the thorax and body load was changed by applying currents to a coil below the substrate. Body position was monitored by video recording. The tibial sensilla are organized into proximal and distal subgroups that have different response properties and reflex effects: proximal sensilla excite extensor motoneurons while distal receptors inhibit extensor firing. Sudden load decreases elicited bursts from distal sensilla, while increased load excited proximal receptors. The onset of sensory discharges closely approximated the time of peak velocity of body movement in both load decreases and increases. Firing of distal sensilla rapidly adapted to sustained unloading, while proximal sensilla discharged tonically to load increases. Load decreases of small amplitude or at low rates produced only inhibition of proximal activity while decrements of larger size or rate elicited distal firing. These response properties may provide discrete signals that either modulate excitatory extensor drive during small load variations or inhibit support prior to compensatory stepping or initiation of swing.
Collapse
Affiliation(s)
- Bridget R Keller
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The objective of this study was to determine if load receptors contribute to the afferent-mediated enhancement of ankle extensor muscle activity during the late stance phase of the step cycle. Plantar flexion perturbations were presented in late stance while able-bodied human subjects walked on a treadmill that was declined by 4%, inclined by 4% or held level. The plantar flexion perturbation produced a transient, but marked, presumably spinally mediated decrease in soleus EMG that varied directly with the treadmill inclination. Similarly, the magnitude of the control step soleus EMG and Achilles' tendon force also varied directly with the treadmill inclination. In contrast, the ankle angular displacement and velocity were inversely related to the treadmill inclination. These results suggest that Golgi tendon organ feedback, via the group Ib pathway, is reduced when the muscle-tendon complex is unloaded by a rapid plantar flexion perturbation in late stance phase. The changes in the unload response with treadmill inclination suggest that the late stance phase soleus activity may be enhanced by force feedback.
Collapse
Affiliation(s)
- Michael J Grey
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| | | | | | | |
Collapse
|
47
|
Abstract
For a large number of vertebrate species it is now indisputable that spinal networks have the capability of generating the basic locomotor rhythm. The aim of this review is to summarize the evidence for spinal pattern generators in cats and primates, including man and its interaction with sensory signals from the limbs. For all species the sensory feed-back from the moving limb is very important to achieve effective locomotor behaviour by adapting to the environment and compensating for unexpected postural disturbances. Sensory regulation of stepping can occur via reflex pathways to motoneurones (by-passing the locomotor rhythm generators) or by acting on the spinal locomotor networks themselves. The sensory feed-back serves to control the timing of the different phases in the step cycle, to shape the pattern of muscle activity, to contribute to the excitatory drive of the motoneurones and to the long-term adaptation of the locomotor activity. In this review we discuss the spinal locomotor circuits and the sensory feed-back in animals (mainly the cat) and human subjects. Special emphasis is given to work that has been of importance for the development of new rehabilitation paradigms following spinal cord injury.
Collapse
Affiliation(s)
- H Hultborn
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Copenhagen N, Denmark.
| | | |
Collapse
|
48
|
Frigon A, Rossignol S. Experiments and models of sensorimotor interactions during locomotion. BIOLOGICAL CYBERNETICS 2006; 95:607-27. [PMID: 17115216 DOI: 10.1007/s00422-006-0129-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/23/2006] [Indexed: 05/12/2023]
Abstract
During locomotion sensory information from cutaneous and muscle receptors is continuously integrated with the locomotor central pattern generator (CPG) to generate an appropriate motor output to meet the demands of the environment. Sensory signals from peripheral receptors can strongly impact the timing and amplitude of locomotor activity. This sensory information is gated centrally depending on the state of the system (i.e., rest vs. locomotion) but is also modulated according to the phase of a given task. Consequently, if one is to devise biologically relevant walking models it is imperative that these sensorimotor interactions at the spinal level be incorporated into the control system.
Collapse
Affiliation(s)
- Alain Frigon
- Center and Group for Neurological Sciences, Department of Physiology, CIHR group in Neurological Sciences, CIHR Regenerative Medicine and Nanomedicine Team, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
49
|
McVea DA, Pearson KG. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses. J Neurophysiol 2006; 97:659-69. [PMID: 17108090 DOI: 10.1152/jn.00921.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A consistent feature of animal locomotion is the capacity to maintain stable movements in changing environments. Here we describe long-term modification of the swing movement of the hind leg in cats in response to repeatedly impeding the movement of the leg. While studying phase transitions in the hind legs, we discovered that repetitively evoking the stumbling-corrective reaction led to long-lasting increases in knee flexion and step height during swing to avoid the impediment. These increases were apparent after nearly 20 stimuli and maximal after about 120 stimuli and, in some animals, they persisted for > or =24 h after presentation of the stimuli. Furthermore, these long-lasting changes were context dependent and did not generalize to other environments; when walking was observed in an environment distinct from that used in training, the hind-limb kinematics returned to normal. To gain insight into what regions of the nervous system might be involved in this long-term modification, we examined the changes in stepping in decerebrate cats after multiple perturbed steps. In this situation, there was a short-term increase in step height, although this increase was smaller than that evoked in intact animals and persisted for <1 min after termination of the stimuli. Thus induction of the long-term increase in step height requires the forebrain. We propose that the conditioned change in leg movement is related to a general ability of animals to adapt locomotor movements to new features of the environment.
Collapse
Affiliation(s)
- D A McVea
- Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
50
|
Stoloff RH, Zehr EP, Ferris DP. Recumbent stepping has similar but simpler neural control compared to walking. Exp Brain Res 2006; 178:427-38. [PMID: 17072607 DOI: 10.1007/s00221-006-0745-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to compare muscle activation patterns and kinematics during recumbent stepping and walking to determine if recumbent stepping has a similar motor pattern as walking. We measured joint kinematics and electromyography in ten neurologically intact humans walking on a treadmill at 0 and 50% body weight support (BWS), and recumbent stepping using a commercially available exercise machine. Cross correlation of upper and lower limb electromyography patterns between conditions revealed high correlations for most muscles. A principal component analysis revealed that the first factor accounted for more muscle activation signal content during recumbent stepping (81%) than during walking (70%). This indicates that the motor pattern during walking is more complex than during stepping. Cross correlation analysis found a high correlation between factors for recumbent stepping and walking (R = 0.54), though not as high as the correlation between factors for walking at 0% BWS and walking at 50% BWS (R = 0.68). There were substantial differences in joint kinematics between walking and recumbent stepping, most notably in hip, elbow, and shoulder motions. These results suggest that although the two tasks have different kinematic patterns, recumbent stepping relies on similar neural networks as walking. Individuals with neurological impairments may be able to improve walking ability from recumbent stepping practice given similarities in neural control between the two tasks.
Collapse
Affiliation(s)
- Rebecca H Stoloff
- Department of Movement Science, University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | |
Collapse
|