1
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
3
|
Vanderwolf KJ, Kyle CJ, Faure PA, McAlpine DF, Davy CM. Skin pH varies among bat species and seasons and between wild and captive bats. CONSERVATION PHYSIOLOGY 2021; 9:coab088. [PMID: 34925845 PMCID: PMC8672241 DOI: 10.1093/conphys/coab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Skin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables. Increased skin alkalinity is associated with a predisposition to cutaneous infections in humans and dogs, and inter-specific and inter-individual variation in skin pH is implicated in differential susceptibility to some skin diseases. The cutaneous pH of bats has not been characterized but is postulated to play a role in susceptibility to white-nose syndrome (WNS), a fungal infection that has decimated several Nearctic bat species. We used non-invasive probes to measure the pH of bat flight membranes in five species with differing susceptibility to WNS. Skin pH ranged from 4.67 to 8.59 and varied among bat species, geographic locations, body parts, age classes, sexes and seasons. Wild Eptesicus fuscus were consistently more acidic than wild Myotis lucifugus, Myotis leibii and Perimyotis subflavus. Juvenile bats had more acidic skin than adults during maternity season but did not differ during swarming. Male M. lucifugus were more acidic than females during maternity season, yet this trend reversed during swarming. Bat skin was more acidic in summer compared to winter, a pattern also reported in humans. Skin pH was more acidic in captive than wild E. fuscus, suggesting environmental impacts on skin pH. The pH of roosting substrates affects skin pH in captive bats and may partially explain seasonal patterns in wild bats that use different roost types across seasons. Future research on the influence of pH on microbial pathogenic factors and skin barrier function may provide valuable insights on new therapeutic targets for treating bat skin conditions.
Collapse
Affiliation(s)
- Karen J Vanderwolf
- Corresponding author: Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Canada.
| | - Christopher J Kyle
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Forensic Science Department, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Donald F McAlpine
- Department of Natural History, New Brunswick Museum, 277 Douglas Ave, Saint John, E2K 1E5, New Brunswick, Canada
| | - Christina M Davy
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Current affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
4
|
Pannkuk EL, Dorville NASY, Dzal YA, Fletcher QE, Norquay KJO, Willis CKR, Fornace AJ, Laiakis EC. Hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at early stages of white-nose syndrome. Sci Rep 2021; 11:11581. [PMID: 34078939 PMCID: PMC8172879 DOI: 10.1038/s41598-021-90828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Nicole A S-Y Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Quinn E Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Kaleigh J O Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada.
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| |
Collapse
|
5
|
Abstract
The recent introduction of Pseudogymnoascus destructans (the fungal pathogen that causes white-nose syndrome in bats) from Eurasia to North America has resulted in the collapse of North American bat populations and restructured species communities. The long evolutionary history between P. destructans and bats in Eurasia makes understanding host life history essential to uncovering the ecology of P. destructans. In this Review, we combine information on pathogen and host biology to understand the patterns of P. destructans spread, seasonal transmission ecology, the pathogenesis of white-nose syndrome and the cross-scale impact from individual hosts to ecosystems. Collectively, this research highlights how early pathogen detection and quantification of host impacts has accelerated the understanding of this newly emerging infectious disease.
Collapse
|
6
|
Johnson JS, Sharp NW, Monarchino MN, Lilley TM, Edelman AJ. No Sign of Infection in Free-Ranging Myotis austroriparius Hibernating in the Presence of Pseudogymnoascus destructans in Alabama. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Joseph S. Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701
| | - Nicholas W. Sharp
- Alabama Non-game Wildlife Program, Division of Wildlife and Freshwater Fisheries, Tanner, AL 35671
| | | | - Thomas M. Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Andrew J. Edelman
- Department of Biology, University of West Georgia, Carrollton, GA 30118
| |
Collapse
|
7
|
Bernard RF, Reichard JD, Coleman JTH, Blackwood JC, Verant ML, Segers JL, Lorch JM, White J, Moore MS, Russell AL, Katz RA, Lindner DL, Toomey RS, Turner GG, Frick WF, Vonhof MJ, Willis CKR, Grant EHC. Identifying research needs to inform white‐nose syndrome management decisions. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Riley F. Bernard
- Department of Ecosystem Science and ManagementPennsylvania State University University Park Pennsylvania USA
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| | | | | | - Julie C. Blackwood
- Department of Mathematics and StatisticsWilliams College Williamstown Massachusetts USA
| | - Michelle L. Verant
- Biological Resource DivisionWildlife Health Branch Fort Collins Colorado USA
| | - Jordi L. Segers
- Canadian Wildlife Health Cooperative Charlottetown Prince Edward Island Canada
| | - Jeffery M. Lorch
- United States Geological Survey National Wildlife Health Center Madison Wisconsin USA
| | - John White
- Bureau of Natural Heritage ConservationWisconsin Department of Natural Resources Madison Wisconsin USA
| | - Marianne S. Moore
- College of Integrative Science and ArtsArizona State University Mesa Arizona USA
| | - Amy L. Russell
- Department of BiologyGrand Valley State University Allendale Michigan USA
| | - Rachel A. Katz
- United States Fish and Wildlife Service Hadley Massachusetts USA
| | - Daniel L. Lindner
- United States Forest ServiceNorthern Research Station Madison Wisconsin USA
| | | | | | - Winifred F. Frick
- Department of Ecology and Evolutionary BiologyUniversity of California Santa Cruz California USA
- Bat Conservation International Austin Texas USA
| | - Maarten J. Vonhof
- Department of Biological SciencesWestern Michigan University Kalamazoo Michigan USA
- Institute of the Environment and SustainabilityWestern Michigan University Kalamazoo Michigan USA
| | | | - Evan H. C. Grant
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| |
Collapse
|
8
|
Dufresne M, Masson JF, Chaurand P. Sodium-Doped Gold-Assisted Laser Desorption Ionization for Enhanced Imaging Mass Spectrometry of Triacylglycerols from Thin Tissue Sections. Anal Chem 2016; 88:6018-25. [PMID: 27145160 DOI: 10.1021/acs.analchem.6b01141] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The deposition of sodium salts followed by a sputtered layer of gold has been demonstrated to be a power combination for the analysis of triacylglycerols (TAGs) from tissue sections by laser desorption ionization (LDI) imaging mass spectrometry (IMS). Various sodium salts were tested for their capability to ionize TAGs and their ability to produce fast drying, small crystals (≤3 μm). The spray deposition of a sodium acetate and carbonate buffer mixture at pH 10.3 on which a 28 ± 3 nm sputtered layer of gold (Au-CBS) is subsequently deposited was found to provide the most effective combination for TAG analysis by high imaging resolution IMS. Under these conditions, a 30-fold increase in TAG signal intensity was observed when compared to matrix-assisted LDI (MALDI) methods using 2,5-dihydrobenzoic acid as matrix. Furthermore, Au-CBS led to an increase in the number of detected TAG species from ∼7 with DHB to more than 25 with the novel method, while few phospholipid signals were observed. These results were derived from the IMS investigation of fresh frozen mouse liver and rabbit adrenal gland tissue sections with a range of higher spatial resolutions between 35 and 10 μm. Au-CBS-LDI MS presents a highly sensitive and specific alternative to MALDI MS for imaging of TAGs from tissue sections. This novel approach has the potential to provide new biological insights on the role of TAGs in both health and disease.
Collapse
Affiliation(s)
- Martin Dufresne
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada.,Centre for Self-Assembled Chemical Structures (CSACS), McGill University , Montreal, Quebec H3A 2K6, Canada
| | - Pierre Chaurand
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
Pannkuk EL, Mcguire LP, Warnecke L, Turner JM, Willis CK, Risch TS. Glycerophospholipid Profiles of Bats with White-Nose Syndrome. Physiol Biochem Zool 2015; 88:425-32. [PMID: 26052639 PMCID: PMC4636339 DOI: 10.1086/681931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, AR 72467
| | - Liam P. Mcguire
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9
| | - Lisa Warnecke
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9
| | - James M. Turner
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9
| | - Craig K.R. Willis
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, AR 72467
| |
Collapse
|
10
|
Řezanka T, Viden I, Nováková A, Bandouchová H, Sigler K. Wax Ester Analysis of Bats Suffering from White Nose Syndrome in Europe. Lipids 2015; 50:633-45. [PMID: 25975369 DOI: 10.1007/s11745-015-4027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
The composition of wax esters (WE) in the fur of adult greater mouse-eared bats (Myotis myotis), either healthy or suffering from white nose syndrome (WNS) caused by the psychrophilic fungus Pseudogymnoascus destructans, was investigated by high-resolution mass spectrometry analysis in the positive ion mode. Profiling of lipid classes showed that WE are the most abundant lipid class, followed by cholesterol esters, and other lipid classes, e.g., triacylglycerols and phospholipids. WE abundance in non-polar lipids was gender-related, being higher in males than in females; in individuals suffering from WNS, both male and female, it was higher than in healthy counterparts. WE were dominated by species containing 18:1 fatty acids. Fatty alcohols were fully saturated, dominated by species containing 24, 25, or 26 carbon atoms. Two WE species, 18:1/18:0 and 18:1/20:0, were more abundant in healthy bats than in infected ones.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic,
| | | | | | | | | |
Collapse
|
11
|
Fatty acid methyl ester profiles of bat wing surface lipids. Lipids 2014; 49:1143-50. [PMID: 25227993 DOI: 10.1007/s11745-014-3951-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/03/2014] [Indexed: 01/19/2023]
Abstract
Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.
Collapse
|
12
|
Pannkuk EL, Gilmore DF, Fuller NW, Savary BJ, Risch TS. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols. Chem Biodivers 2014; 10:2122-32. [PMID: 24327437 DOI: 10.1002/cbdv.201300319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Indexed: 12/16/2022]
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, AR 72467, USA (phone: +1(870) 972-2007, fax: +1(870) 972-3827).
| | | | | | | | | |
Collapse
|
13
|
Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures. Fungal Biol 2014; 118:792-9. [PMID: 25209638 DOI: 10.1016/j.funbio.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023]
Abstract
Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats.
Collapse
|
14
|
Abstract
AbstractThe most important advances in planar chromatography published between November 1, 2011 and November 1, 2013 are reviewed in this paper. Included are an introduction to the current status of the field; student experiments, books, and reviews; theory and fundamental studies; apparatus and techniques for sample preparation and TLC separations (sample application and plate development with the mobile phase); detection and identification of separated zones (chemical and biological detection, TLC/mass spectrometry, and TLC coupled with other spectrometric methods); techniques and instruments for quantitative analysis; preparative layer chromatography; and thin layer radiochromatography. Numerous applications to a great number of compound types and sample matrices are presented in all sections of the review.
Collapse
|
15
|
Pannkuk EL, McGuire LP, Gilmore DF, Savary BJ, Risch TS. Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. J Chem Ecol 2014; 40:227-35. [PMID: 24532214 PMCID: PMC4167415 DOI: 10.1007/s10886-014-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, Jonesboro, AR, 72467, USA,
| | | | | | | | | |
Collapse
|