1
|
Negro G, Head LC, Carenza LN, Shendruk TN, Marenduzzo D, Gonnella G, Tiribocchi A. Topology controls flow patterns in active double emulsions. Nat Commun 2025; 16:1412. [PMID: 39915471 PMCID: PMC11802772 DOI: 10.1038/s41467-025-56236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Active emulsions and liquid crystalline shells are intriguing and experimentally realisable types of topological matter. Here we numerically study the morphology and spatiotemporal dynamics of a double emulsion, where one or two passive small droplets are embedded in a larger active droplet. We find activity introduces a variety of rich and nontrivial nonequilibrium states in the system. First, a double emulsion with a single active droplet becomes self-motile, and there is a transition between translational and rotational motion: both of these regimes remain defect-free, hence topologically trivial. Second, a pair of particles nucleate one or more disclination loops, with conformational dynamics resembling a rotor or chaotic oscillator, accessed by tuning activity. In the first state a single, topologically charged, disclination loop powers the rotation. In the latter state, this disclination stretches and writhes in 3D, continuously undergoing recombination to yield an example of an active living polymer. These emulsions can be self-assembled in the lab, and provide a pathway to form flow and topological patterns in active matter in a controlled way, as opposed to bulk systems that typically yield active turbulence.
Collapse
Affiliation(s)
- Giuseppe Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
| | - Louise C Head
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| | - Livio N Carenza
- Physics Department, College of Sciences, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, Italy
| | - Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Roma, Italy
- INFN "Tor Vergata", Via della Ricerca Scientifica 1, Roma, Italy
| |
Collapse
|
2
|
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices. Nat Commun 2023; 14:1096. [PMID: 36841803 PMCID: PMC9968312 DOI: 10.1038/s41467-023-36656-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.
Collapse
|
3
|
Wenzel D, Voigt A. Multiphase field models for collective cell migration. Phys Rev E 2021; 104:054410. [PMID: 34942697 DOI: 10.1103/physreve.104.054410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 01/23/2023]
Abstract
Confluent cell monolayers and epithelia tissues show remarkable patterns and correlations in structural arrangements and actively driven collective flows. We simulate these properties using multiphase field models. The models are based on cell deformations and cell-cell interactions and we investigate the influence of microscopic details to incorporate active forces on emerging phenomena. We compare four different approaches, one in which the activity is determined by a random orientation, one where the activity is related to the deformation of the cells, and two models with subcellular details to resolve the mechanochemical interactions underlying cell migration. The models are compared with respect to generic features, such as coordination number distribution, cell shape variability, emerging nematic properties, as well as vorticity correlations and flow patterns in large confluent monolayers and confinements. All results are compared with experimental data for a large variety of cell cultures. The appearing qualitative differences of the models show the importance of microscopic details and provide a route towards predictive simulations of patterns and correlations in cell colonies.
Collapse
Affiliation(s)
- D Wenzel
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany.,Cluster of Excellence-Physics of Life, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
4
|
Hardoüin J, Laurent J, Lopez-Leon T, Ignés-Mullol J, Sagués F. Active microfluidic transport in two-dimensional handlebodies. SOFT MATTER 2020; 16:9230-9241. [PMID: 32926045 DOI: 10.1039/d0sm00610f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unlike traditional nematic liquid crystals, which adopt ordered equilibrium configurations compatible with the topological constraints imposed by the boundaries, active nematics are intrinsically disordered because of their self-sustained internal flows. Controlling the flow patterns of active nematics remains a limiting step towards their use as functional materials. Here we show that confining a tubulin-kinesin active nematic to a network of connected annular microfluidic channels enables controlled directional flows and autonomous transport. In single annular channels, for narrow widths, the typically chaotic streams transform into well-defined circulating flows, whose direction or handedness can be controlled by introducing asymmetric corrugations on the channel walls. The dynamics is altered when two or three annular channels are interconnected. These more complex topologies lead to scenarios of synchronization, anti-correlation, and frustration of the active flows, and to the stabilisation of high topological singularities in both the flow field and the orientational field of the material. Controlling textures and flows in these microfluidic platforms opens unexplored perspectives towards their application in biotechnology and materials science.
Collapse
Affiliation(s)
- Jérôme Hardoüin
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Justine Laurent
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Teresa Lopez-Leon
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Le Goff T, Liebchen B, Marenduzzo D. Actomyosin Contraction Induces In-Bulk Motility of Cells and Droplets. Biophys J 2020; 119:1025-1032. [PMID: 32795395 DOI: 10.1016/j.bpj.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cell crawling on two-dimensional surfaces is a relatively well-understood phenomenon that is based on actin polymerization at a cell's front edge and anchoring on a substrate, allowing the cell to pull itself forward. However, some cells, such as cancer cells invading a three-dimensional matrigel, can also swim in the bulk, where surface adhesion is impossible. Although there is strong evidence that the self-organized engine that drives cells forward in the bulk involves myosin, the specific propulsion mechanism remains largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and locally enhanced flow. The symmetry of such flow is then spontaneously broken through actomyosin-membrane interactions, leading to self-organized droplet motility relative to the underlying solvent. Depending on the balance between contraction, diffusion, detachment rate of myosin, and effective surface tension, this motion can be either straight or circular. Our simulations and analytical results shed new light on in-bulk myosin-driven cell motility in living cells and provide a framework to design a novel type of synthetic active matter droplet potentially resembling the motility mechanism of biological cells.
Collapse
Affiliation(s)
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Trinschek S, Stegemerten F, John K, Thiele U. Thin-film modeling of resting and moving active droplets. Phys Rev E 2020; 101:062802. [PMID: 32688574 DOI: 10.1103/physreve.101.062802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
We propose a generic model for thin films and shallow drops of a polar active liquid that have a free surface and are in contact with a solid substrate. The model couples evolution equations for the film height and the local polarization in the form of a gradient dynamics supplemented with active stresses and fluxes. A wetting energy for a partially wetting liquid is incorporated allowing for motion of the liquid-solid-gas contact line. This gives a consistent basis for the description of drops of dense bacterial suspensions or compact aggregates of living cells on solid substrates. As example, we analyze the dynamics of two-dimensional active drops (i.e., ridges) and demonstrate how active forces compete with passive surface forces to shape droplets and drive their motion. In our simple two-dimensional scenario we find that defect structures within the polarization profile drastically influence the shape and motility of active droplets. Thus, we can observe a transition from resting to motile droplets via the elimination of defects in the polarization profile. Furthermore, droplet motility is modulated by strong active stresses. Contractile stresses even lead to topological changes, i.e., drop splitting, which is naturally encoded in the evolution equations.
Collapse
Affiliation(s)
- Sarah Trinschek
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Université Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique 38000 Grenoble, France
| | - Fenna Stegemerten
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Karin John
- Université Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique 38000 Grenoble, France
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
7
|
Loisy A, Eggers J, Liverpool TB. How many ways a cell can move: the modes of self-propulsion of an active drop. SOFT MATTER 2020; 16:3106-3124. [PMID: 32154549 DOI: 10.1039/d0sm00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous physical models have been proposed to explain how cell motility emerges from internal activity, mostly focused on how crawling motion arises from internal processes. Here we offer a classification of self-propulsion mechanisms based on general physical principles, showing that crawling is not the only way for cells to move on a substrate. We consider a thin drop of active matter on a planar substrate and fully characterize its autonomous motion for all three possible sources of driving: (i) the stresses induced in the bulk by active components, which allow in particular tractionless motion, (ii) the self-propulsion of active components at the substrate, which gives rise to crawling motion, and (iii) a net capillary force, possibly self-generated, and coupled to internal activity. We determine travelling-wave solutions to the lubrication equations as a function of a dimensionless activity parameter for each mode of motion. Numerical simulations are used to characterize the drop motion over a wide range of activity magnitudes, and explicit analytical solutions in excellent agreement with the simulations are derived in the weak-activity regime.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
8
|
Lavi I, Meunier N, Voituriez R, Casademunt J. Motility and morphodynamics of confined cells. Phys Rev E 2020; 101:022404. [PMID: 32168566 DOI: 10.1103/physreve.101.022404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biological cell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an active cytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcy flow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairly simple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamic behaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a global polarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higher activity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape and solute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with unique polarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigm of active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers.
Collapse
Affiliation(s)
- Ido Lavi
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | | | - Raphael Voituriez
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Jaume Casademunt
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Abstract
We investigate the self-propulsive motion of a drop containing an active polar field. The drop demonstrates spontaneous symmetry breaking from a uniform orientational order into a splay or bend instability depending on the types of active stress, namely, contractile or extensile, respectively. We develop an analytical theory of the mechanism of this instability, which has been observed only in numerical simulations. We show that both contractile and extensile active stresses result in the instability and self-propulsive motion. We also discuss asymmetry between contractile and extensile stresses and show that extensile active stress generates chaotic motion even under a simple model of the polarity field coupled with motion and deformation of the drop.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan and MathAM-OIL, AIST, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Guillamat P, Kos Ž, Hardoüin J, Ignés-Mullol J, Ravnik M, Sagués F. Active nematic emulsions. SCIENCE ADVANCES 2018; 4:eaao1470. [PMID: 29740605 PMCID: PMC5938235 DOI: 10.1126/sciadv.aao1470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/16/2018] [Indexed: 05/11/2023]
Abstract
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.
Collapse
Affiliation(s)
- Pau Guillamat
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Jérôme Hardoüin
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
- Corresponding author.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| |
Collapse
|
11
|
Fialho AR, Blow ML, Marenduzzo D. Anchoring-driven spontaneous rotations in active gel droplets. SOFT MATTER 2017; 13:5933-5941. [PMID: 28770268 DOI: 10.1039/c7sm01019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the dynamics of an active gel droplet with imposed orientational anchoring (normal or planar) at its surface. We find that if the activity is large enough droplets subject to strong anchoring spontaneously start to rotate, with the sense of rotation randomly selected by fluctuations. Contractile droplets rotate only for planar anchoring and extensile ones only for normal anchoring. This is because such a combination leads to a pair of stable elastic deformations which creates an active torque to power the rotation. Interestingly, under these conditions there is a conflict between the anchoring promoted thermodynamically and that favoured by activity. By tuning activity and anchoring strength, we find a wealth of qualitatively different droplet morphologies and spatiotemporal patterns, encompassing steady rotations, oscillations, and more irregular trajectories. The spontaneous rotations we observe are fundamentally different from previously reported instances of rotating defects in active fluids as they require the presence of strong enough anchoring and entail significant droplet shape deformations.
Collapse
Affiliation(s)
- A R Fialho
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | | | | |
Collapse
|
12
|
Marth W, Voigt A. Collective migration under hydrodynamic interactions: a computational approach. Interface Focus 2016; 6:20160037. [PMID: 27708761 DOI: 10.1098/rsfs.2016.0037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We consider a generic model for cell motility. Even if a comprehensive understanding of cell motility remains elusive, progress has been achieved in its modelling using a whole-cell physical model. The model takes into account the main mechanisms of cell motility, actin polymerization, actin-myosin dynamics and substrate mediated adhesion (if applicable), and combines them with steric cell-cell and hydrodynamic interactions. The model predicts the onset of collective cell migration, which emerges spontaneously as a result of inelastic collisions of neighbouring cells. Each cell here modelled as an active polar gel is accomplished with two vortices if it moves. Upon collision of two cells, the two vortices which come close to each other annihilate. This leads to a rotation of the cells and together with the deformation and the reorientation of the actin filaments in each cell induces alignment of these cells and leads to persistent translational collective migration. The effect for low Reynolds numbers is as strong as in the non-hydrodynamic model, but it decreases with increasing Reynolds number.
Collapse
Affiliation(s)
- W Marth
- Institut für Wissenschaftliches Rechnen , TU Dresden , 01062 Dresden , Germany
| | - A Voigt
- Institut für Wissenschaftliches Rechnen, TU Dresden, 01062 Dresden, Germany; Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany; Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
13
|
Fruleux A, Hawkins RJ. Physical role for the nucleus in cell migration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:363002. [PMID: 27406341 DOI: 10.1088/0953-8984/28/36/363002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.
Collapse
Affiliation(s)
- Antoine Fruleux
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | |
Collapse
|
14
|
Marth W, Praetorius S, Voigt A. A mechanism for cell motility by active polar gels. J R Soc Interface 2016; 12:rsif.2015.0161. [PMID: 25926698 DOI: 10.1098/rsif.2015.0161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Besides a detailed numerical approach together with convergence studies for the highly nonlinear free boundary problem, we also compare the induced flow field of the motile cell with that of classical squirmer models and identify the motile cell as a puller or pusher, depending on the strength of the myosin-actin interactions.
Collapse
Affiliation(s)
- W Marth
- Institut für Wissenschaftliches Rechnen, TU Dresden, Dresden 01062, Germany
| | - S Praetorius
- Institut für Wissenschaftliches Rechnen, TU Dresden, Dresden 01062, Germany
| | - A Voigt
- Institut für Wissenschaftliches Rechnen, TU Dresden, Dresden 01062, Germany
| |
Collapse
|
15
|
Khoromskaia D, Alexander GP. Motility of active fluid drops on surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062311. [PMID: 26764696 DOI: 10.1103/physreve.92.062311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013)]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.
Collapse
Affiliation(s)
- Diana Khoromskaia
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gareth P Alexander
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Neef M, Kruse K. Generation of stationary and moving vortices in active polar fluids in the planar Taylor-Couette geometry. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052703. [PMID: 25493812 DOI: 10.1103/physreve.90.052703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 06/04/2023]
Abstract
We study the dynamics of an active polar fluid in the interstitial space between two fixed coaxial cylinders. For sufficiently large expansive or contractive active stresses, the fluid presents roll instabilities of axially symmetric states leading to the spontaneous formation of vortices in the flow field. These vortices are either stationary or travel around the inner cylinder. Increasing the activity further, our numerical solutions indicate the existence of active turbulence that coexists with regular vortex solutions.
Collapse
Affiliation(s)
- M Neef
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | - K Kruse
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| |
Collapse
|
17
|
De Magistris G, Tiribocchi A, Whitfield CA, Hawkins RJ, Cates ME, Marenduzzo D. Spontaneous motility of passive emulsion droplets in polar active gels. SOFT MATTER 2014; 10:7826-7837. [PMID: 25156695 DOI: 10.1039/c4sm00937a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations in the surrounding active medium.
Collapse
Affiliation(s)
- G De Magistris
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Giomi L, DeSimone A. Spontaneous division and motility in active nematic droplets. PHYSICAL REVIEW LETTERS 2014; 112:147802. [PMID: 24766017 DOI: 10.1103/physrevlett.112.147802] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Indexed: 06/03/2023]
Abstract
We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay between the active stresses and the defective geometry of the nematic director, this system exhibits two of the fundamental functions of living cells: spontaneous division and motility, by means of self-generated hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical parameter, namely, an active variant of the capillary number.
Collapse
Affiliation(s)
- Luca Giomi
- SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Antonio DeSimone
- SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|