1
|
Ghanbari M, Zhou Z, Hsu LM, Han Y, Sun Y, Yap PT, Zhang H, Shen D. Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer's Disease. Neuroinformatics 2021; 20:391-403. [PMID: 34837154 DOI: 10.1007/s12021-021-09554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Graph theory has been extensively used to investigate brain network topology and its changes in disease cohorts. However, many graph theoretic analysis-based brain network studies focused on the shortest paths or, more generally, cost-efficiency. In this work, we use two new concepts, connectedness and 2-connectedness, to measure different global properties compared to the previously widely adopted ones. We apply them to unravel interesting characteristics in the brain, such as redundancy design and further conduct a time-varying brain functional network analysis for characterizing the progression of Alzheimer's disease (AD). Specifically, we define different connectedness and 2-connectedness states and evaluate their dynamics in AD and its preclinical stage, mild cognitive impairment (MCI), compared to the normal controls (NC). Results indicate that, compared to MCI and NC, brain networks of AD tend to be more frequently connected at a sparse level. For MCI, we found that their brains are more likely to be 2-connected in the minimal connected state as well indicating increasing redundancy in brain connectivity. Such a redundant design could ensure maintained connectedness of the MCI's brain network in the case that pathological damages break down any link or silenced any node, making it possible to preserve cognitive abilities. Our study suggests that the redundancy in the brain functional chronnectome could be altered in the preclinical stage of AD. The findings can be successfully replicated in a retest study and with an independent MCI dataset. Characterizing redundancy design in the brain chronnectome using connectedness and 2-connectedness analysis provides a unique viewpoint for understanding disease affected brain networks.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Han
- Department of National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Beijing Institute of Geriatrics, Beijing, 100053, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| |
Collapse
|
2
|
Lai YLL, Chen K, Lee TW, Tso CW, Lin HH, Kuo LW, Chen CY, Liu HS. The Effect of the APOE-ε4 Allele on the Cholinergic Circuitry for Subjects With Different Levels of Cognitive Impairment. Front Neurol 2021; 12:651388. [PMID: 34721251 PMCID: PMC8548434 DOI: 10.3389/fneur.2021.651388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Cholinergic deficiency has been suggested to associate with the abnormal accumulation of Aβ and tau for patients with Alzheimer's disease (AD). However, no studies have investigated the effect of APOE-ε4 and group differences in modulating the cholinergic basal forebrain-amygdala network for subjects with different levels of cognitive impairment. We evaluated the effect of APOE-ε4 on the cholinergic structural association and the neurocognitive performance for subjects with different levels of cognitive impairment. Methods: We used the structural brain magnetic resonance imaging scans from the Alzheimer's Disease Neuroimaging Initiative dataset. The study included cognitively normal (CN, n = 167) subjects and subjects with significant memory concern (SMC, n = 96), early mild cognitive impairment (EMCI, n = 146), late cognitive impairment (LMCI, n = 138), and AD (n = 121). Subjects were further categorized according to the APOE-ε4 allele carrier status. The main effects of APOE-ε4 and group difference on the brain volumetric measurements were assessed. Regression analyses were conducted to evaluate the associations among cholinergic structural changes, APOE-ε4 status, and cognitive performance. Results: We found that APOE-ε4 carriers in the disease group showed higher brain atrophy than non-carriers in the cholinergic pathway, while there is no difference between carriers and non-carriers in the CN group. APOE-ε4 allele carriers in the disease groups also exhibited a stronger cholinergic structural correlation than non-carriers did, while there is no difference between the carriers and non-carriers in the CN subjects. Disease subjects exhibited a stronger structural correlation in the cholinergic pathway than CN subjects did. Moreover, APOE-ε4 allele carriers in the disease group exhibited a stronger correlation between the volumetric changes and cognitive performance than non-carriers did, while there is no difference between carriers and non-carriers in CN subjects. Disease subjects exhibited a stronger correlation between the volumetric changes and cognitive performance than CN subjects did. Conclusion: Our results confirmed the effect of APOE-ε4 on and group differences in the associations with the cholinergic structural changes that may reflect impaired brain function underlying neurocognitive degeneration in AD.
Collapse
Affiliation(s)
- Ying-Liang Larry Lai
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Kuan Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wei Lee
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wei Tso
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hsien Lin
- Computed Tomography (CT) and Magnetic Resonance (MR) Division, Rotary Trading Co., Ltd., Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Wu Z, Peng Y, Hong M, Zhang Y. Gray Matter Deterioration Pattern During Alzheimer's Disease Progression: A Regions-of-Interest Based Surface Morphometry Study. Front Aging Neurosci 2021; 13:593898. [PMID: 33613265 PMCID: PMC7886803 DOI: 10.3389/fnagi.2021.593898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Accurate detection of the regions of Alzheimer's disease (AD) lesions is critical for early intervention to effectively slow down the progression of the disease. Although gray matter volumetric abnormalities are commonly detected in patients with mild cognition impairment (MCI) and patients with AD, the gray matter surface-based deterioration pattern associated with the progression of the disease from MCI to AD stages is largely unknown. To identify group differences in gray matter surface morphometry, including cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were split into healthy controls (HCs; N = 20), early MCIs (EMCI; N = 20), late MCIs (LMCI; N = 20), and ADs (N = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently studied and compared across the four stage groups to characterize the gray matter deterioration during AD progression. Co-alteration patterns (Spearman's correlation coefficient) across the whole brain were also examined. Results showed that patients with MCI and AD exhibited a significant reduction in cortical thickness (p < 0.001) mainly in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal (five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth of the eight temporal, four frontal, four occipital, and eight parietal subregions were also significantly affected (p < 0.001) by the progression of AD. The GI was shown to be insensitive to AD progression (only three subregions were detected with a significant difference, p < 0.001). Moreover, Spearman's correlation analysis confirmed that the co-alteration pattern of the cortical thickness and sulcus depth indices is predominant during AD progression. The findings highlight the relevance between gray matter surface morphometry and the stages of AD, laying the foundation for in vivo tracking of AD progression. The co-alteration pattern of surface-based morphometry would improve the researchers' knowledge of the underlying pathologic mechanisms in AD.
Collapse
Affiliation(s)
- Zhanxiong Wu
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China.,Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yun Peng
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ming Hong
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
4
|
Ortiz A, Munilla J, Martínez-Murcia FJ, Górriz JM, Ramírez J. Empirical Functional PCA for 3D Image Feature Extraction Through Fractal Sampling. Int J Neural Syst 2019; 29:1850040. [DOI: 10.1142/s0129065718500405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medical image classification is currently a challenging task that can be used to aid the diagnosis of different brain diseases. Thus, exploratory and discriminative analysis techniques aiming to obtain representative features from the images play a decisive role in the design of effective Computer Aided Diagnosis (CAD) systems, which is especially important in the early diagnosis of dementia. In this work, we present a technique that allows using specific time series analysis techniques with 3D images. This is achieved by sampling the image using a fractal-based method which preserves the spatial relationship among voxels. In addition, a method called Empirical functional PCA (EfPCA) is presented, which combines Empirical Mode Decomposition (EMD) with functional PCA to express an image in the space spanned by a basis of empirical functions, instead of using components computed by a predefined basis as in Fourier or Wavelet analysis. The devised technique has been used to classify images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Parkinson Progression Markers Initiative (PPMI), achieving accuracies up to 93% and 92% differential diagnosis tasks (AD versus controls and PD versus Controls, respectively). The results obtained validate the method, proving that the information retrieved by our methodology is significantly linked to the diseases.
Collapse
Affiliation(s)
- Andrés Ortiz
- Communications Engineering Department, University of Málaga, Málaga 29071, Spain
| | - Jorge Munilla
- Communications Engineering Department, University of Málaga, Málaga 29071, Spain
| | | | - Juan M. Górriz
- Department of Signal Theory, Communications and Networking, University of Granada, Granada 18060, Spain
| | - Javier Ramírez
- Department of Signal Theory, Communications and Networking, University of Granada, Granada 18060, Spain
| |
Collapse
|
5
|
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Int J Neural Syst 2018; 28:1850022. [DOI: 10.1142/s0129065718500223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.
Collapse
Affiliation(s)
- Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Spain
| | - Xiaoyi Jiang
- Department of Computer Science, University of Munster, Germany
| | - Antonio Carrillo
- Department of Computer Architecture and Computer Technology, University of Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, CITIC-UGR, University of Granada, Spain
| |
Collapse
|
6
|
Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson's disease: Cause factors, measurable indicators, and early diagnosis. Comput Biol Med 2018; 102:234-241. [PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
Collapse
Affiliation(s)
- Shreya Bhat
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal, 576104, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, 599491, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | - Nahid Dadmehr
- Board-certified Neurologist, Columbus, OH, United States
| | - Hojjat Adeli
- Departments of Biomedical Informatics, Neurology, and Neuroscience, The Ohio State University, United States
| |
Collapse
|
7
|
Fang C, Li C, Cabrerizo M, Barreto A, Andrian J, Rishe N, Loewenstein D, Duara R, Adjouadi M. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer’s Disease. Int J Neural Syst 2018; 28:1850017. [DOI: 10.1142/s012906571850017x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
Collapse
Affiliation(s)
- Chen Fang
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Chunfei Li
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Armando Barreto
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Jean Andrian
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Naphtali Rishe
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - David Loewenstein
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| |
Collapse
|
8
|
Amezquita-Sanchez JP, Valtierra-Rodriguez M, Adeli H, Perez-Ramirez CA. A Novel Wavelet Transform-Homogeneity Model for Sudden Cardiac Death Prediction Using ECG Signals. J Med Syst 2018; 42:176. [PMID: 30117048 DOI: 10.1007/s10916-018-1031-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/07/2018] [Indexed: 02/01/2023]
Abstract
Sudden cardiac death (SCD) is one of the main causes of death among people. A new methodology is presented for predicting the SCD based on ECG signals employing the wavelet packet transform (WPT), a signal processing technique, homogeneity index (HI), a nonlinear measurement for time series signals, and the Enhanced Probabilistic Neural Network classification algorithm. The effectiveness and usefulness of the proposed method is evaluated using a database of measured ECG data acquired from 20 SCD and 18 normal patients. The proposed methodology presents the following significant advantages: (1) compared with previous works, the proposed methodology achieves a higher accuracy using a single nonlinear feature, HI, thus requiring low computational resource for predicting an SCD onset in real-time, unlike other methodologies proposed in the literature where a large number of nonlinear features are used to predict an SCD event; (2) it is capable of predicting the risk of developing an SCD event up to 20 min prior to the onset with a high accuracy of 95.8%, superseding the prior 12 min prediction time reported recently, and (3) it uses the ECG signal directly without the need for transforming the signal to a heart rate variability signal, thus saving time in the processing.
Collapse
Affiliation(s)
- Juan P Amezquita-Sanchez
- Faculty of Engineering, Departments Biomedical and Electromechanical, ENAP-RG, Autonomous University of Queretaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P, 76807, San Juan del Río, Qro., Mexico
| | - Martin Valtierra-Rodriguez
- Faculty of Engineering, Departments Biomedical and Electromechanical, ENAP-RG, Autonomous University of Queretaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P, 76807, San Juan del Río, Qro., Mexico
| | - Hojjat Adeli
- Departments Biomedical Informatics, Neuroscience, and Neurology, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA.
| | - Carlos A Perez-Ramirez
- Faculty of Engineering, Departments Biomedical and Electromechanical, ENAP-RG, Autonomous University of Queretaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P, 76807, San Juan del Río, Qro., Mexico
| |
Collapse
|
9
|
Cerebral changes and disrupted gray matter cortical networks in asymptomatic older adults at risk for Alzheimer's disease. Neurobiol Aging 2018; 64:58-67. [DOI: 10.1016/j.neurobiolaging.2017.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/26/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
|
10
|
Mammone N, Ieracitano C, Adeli H, Bramanti A, Morabito FC. Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5122-5135. [PMID: 29994428 DOI: 10.1109/tnnls.2018.2791644] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
Collapse
|
11
|
Han Y, Wang K, Jia J, Wu W. Changes of EEG Spectra and Functional Connectivity during an Object-Location Memory Task in Alzheimer's Disease. Front Behav Neurosci 2017; 11:107. [PMID: 28620287 PMCID: PMC5449767 DOI: 10.3389/fnbeh.2017.00107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
Object-location memory is particularly fragile and specifically impaired in Alzheimer’s disease (AD) patients. Electroencephalogram (EEG) was utilized to objectively measure memory impairment for memory formation correlates of EEG oscillatory activities. We aimed to construct an object-location memory paradigm and explore EEG signs of it. Two groups of 20 probable mild AD patients and 19 healthy older adults were included in a cross-sectional analysis. All subjects took an object-location memory task. EEG recordings performed during object-location memory tasks were compared between the two groups in the two EEG parameters (spectral parameters and phase synchronization). The memory performance of AD patients was worse than that of healthy elderly adults The power of object-location memory of the AD group was significantly higher than the NC group (healthy elderly adults) in the alpha band in the encoding session, and alpha and theta bands in the retrieval session. The channels-pairs the phase lag index value of object-location memory in the AD group was clearly higher than the NC group in the delta, theta, and alpha bands in encoding sessions and delta and theta bands in retrieval sessions. The results provide support for the hypothesis that the AD patients may use compensation mechanisms to remember the items and episode.
Collapse
Affiliation(s)
- Yuliang Han
- Department of Neurology, Chinese PLA General HospitalBeijing, China.,Department of Neurology, Chinese PLA 305 HospitalBeijing, China
| | - Kai Wang
- Department of Neurology, Chinese PLA 305 HospitalBeijing, China
| | - Jianjun Jia
- Department of Neurology, Chinese PLA General HospitalBeijing, China
| | - Weiping Wu
- Department of Neurology, Chinese PLA General HospitalBeijing, China
| |
Collapse
|
12
|
Abstract
This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.
Collapse
Affiliation(s)
- Jon delEtoile
- 1 Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hojjat Adeli
- 2 Departments of Biomedical Engineering, Biomedical Informatics, Neurological Surgery, and Neuroscience, and Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|