1
|
Dang R, Xie Z, Cai F, Sun X, Fang Q, Wang G, Guan H, Wang C. Revealing the mechanism of Sanfu Patch dorsal application for alleviating OVA-induced asthma: an integrated approach combining TMT quantitative proteomics and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119867. [PMID: 40280374 DOI: 10.1016/j.jep.2025.119867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic asthma is one of the leading respiratory diseases with complex pathology. Sanfu Patch (SFP) is a traditional Chinese medicine preparation served as a potential topical application therapy for asthma in summer dog days. However, the potential pharmacological substances and underlying mechanism of SFP are not clear. AIM OF STUDY This study aimed to explore active ingredients in SFP as well as their presence in blood and lung tissues, investigate efficacy and potential molecular mechanism of SFP in relieving airway inflammation and intervening airway remodeling of asthma. MATERIALS AND METHODS The chemical components of SFP were analyzed by UPLC-QTOF-MS. Sinapine thiocyanate, protopine, allocryptopine, tetrahydrocoptisine and kansuiphorin C in SFP extract were quantified by UPLC-MS/MS. A mouse asthma model was established by ovalbumin (OVA). The lung histopathology, respiratory function, cytokine (IL-4, IL-5 and IL-13) and IgE levels were used to evaluate the therapeutic effect of SFP on asthmatic mice. Tandem mass tag (TMT)-based quantitative proteomics were performed on lung tissues to excavate proteins regulated by SFP. Western blot was used to validate the expression of relevant proteins. Finally, molecular docking was used to verify the targeting between screened proteins and constituents of SFP. RESULTS Sixty-three compounds were identified in SFP extract, along with twenty-five prototype components in blood and twenty in lung tissue have been found. The contents of sinapine thiocyanate, protopine, allocryptopine, tetrahydrocoptisine, and kansuiphorin C were quantified in SFP extract at 2.27 ± 0.06 mg/g, 1.36 ± 0.02 mg/g, 0.96 ± 0.02 mg/g, 0.42 ± 0.01 mg/g, 0.15 ± 0.01 mg/g, respectively. SFP had a significant ameliorative effect for allergic asthma in mice. SFP was contributed to alleviative airway hyperresponsiveness by declining airway resistance and increasing dynamic lung compliance. SFP not only attenuated airway inflammation and airway collagen deposition but also reduced serum and lung levels of IL-4, IL-5, IL-13, IgE, and significantly decreased the number of eosinophils in bronchoalveolar lavage fluid. The TMT-based quantitative proteomics showed that SFP improved autophagy and asthma pathways. SFP significantly reduced OVA-induced protein expressions of CD40, CD40L, and CLN5. Furthermore, molecular docking results indicated high bond energies of alkaloids, sinapine thiocyanate, and kansuiphorin C binding to CD40, CD40L, and CLN5. CONCLUSIONS It was demonstrated that SFP was a potential natural active preparation in the treatment of asthma, which may have an inhibitory effect on airway inflammation. The therapeutic effect of SFP was related to the lysosome pathway and asthma pathway.
Collapse
Affiliation(s)
- Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xin Sun
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Qinqin Fang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Guangdong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Huo M, Liu H, Chen S, Xiu L, Yu X, Zhong G. Kansui-liquorice enhances the "water-expelling" effect of Gansui Banxia decoction in rats with malignant ascites by targeting the NPs/NPRs/cGMP/PKGⅡ pathway and T cell immunity. Front Pharmacol 2025; 16:1557717. [PMID: 40356964 PMCID: PMC12067993 DOI: 10.3389/fphar.2025.1557717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Ethnopharmacological relevance The combination of Euphorbia kansui Liou ex S.B.Ho (kansui) and Glycyrrhiza uralensis Fisch (liquorice) is contraindicated in Chinese medicine, but whether it can be used in clinical practice remains controversial. The classic formula, Gansui Banxia decoction (GBD), contains kansui and liquorice, which is effective in treating an abnormal accumulation of body fluids, such as malignant ascites (MA); however, the contraindications of kansui and liquorice have limited its clinical application. Aim of the study This study aims to provide a theoretical basis for the rational application of kansui-liquorice by investigating its role and mechanism in GBD. Materials and methods LC-MS/MS was used to detect the metabolic differences of - glycyrrhetinic acid, glycyrrhizic acid, glycyrrhizin, glycyrrhizin, glycyrrhizin terpinolipid A, and paeoniflorin - in the liquid of MA rats before and after taking GBD. Network pharmacology was employed to predict the potential targets and mechanisms of GBD in the treatment of MA. The experimental validation was still using MA rats as a model. Flow cytometry was used to assess the expression of immune cells in blood and ascites, and the proliferation and development of T cells in bone marrow and thymus. Elisa was used to detect the content of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in blood. Western blot and qRT-PCR were used to detect the expression of NPs/NPR-A/cGMP/PKG II pathway-related gene and proteins in kidney. The MA model was established by intraperitoneal injection of walker-256 cells at a concentration of 2 × 106/mL and an injection volume of 1 mL. The model was successfully established when the abdominal cavity was obviously distend and touched with a water-shaking sound, and ascites could be seen after opening the abdominal cavity. Results We confirmed that GBD containing kansui-liquorice could promote the metabolism of liquorice and reduce the precipitation of toxic substances (kansuinine A). It may also target cellular immunity to exert a drug effect. Further experimental verification found that GBD containing kansui-liquorice could promote the activation of the NPs/NPRs/cGMP/PKGⅡ pathway and exert a diuretic effect in MA rats. Besides that, it could increase the proportion of CD8CD28 T cells, reduce the proportion of immune-suppressing cells, and maintain the stability of the developmental environment of the T cells. Conclusion We believe that kansui and liquorice are important components of GBD, and their combination could promote GBD to promote the clinical remission of MA through direct (activation of the NPs/NPRs/cGMP/PKGⅡ pathway) and indirect (regulating T-cell immunity) water-expelling effects.
Collapse
Affiliation(s)
| | - Haiyan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | - Gansheng Zhong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Yang X, Li W. Comprehensive analysis of the potential mechanism of gansui in blocking non-small cell lung cancer progression. PHARMACEUTICAL BIOLOGY 2025; 63:170-187. [PMID: 40029169 PMCID: PMC11878171 DOI: 10.1080/13880209.2025.2471844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/07/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
CONTEXT Gansui [Euphorbia kansui T. N. Liou ex S.B.Ho (Euphorbiaceae)] has been reported to inhibit the proliferation of non-small cell lung cancer (NSCLC) cells; however, its underlying pharmacological mechanism remains unclear. OBJECTIVE To investigate the potential effects and mechanisms of Gansui in blocking NSCLC progression. MATERIALS AND METHODS The targets of Gansui's components and NSCLC-related targets were obtained through public database and published studies. Functional enrichment analysis was performed using the clusterProfiler R package. STRING database was used for protein-protein interaction analysis. CytoHubba plugin was applied to get the hub genes. Molecular docking was applied to assess the binding affinities between the hub targets and the crucial components. Kidjolanin was used to treat A549 and NCI-H1385, and its effects on cell viability, sensitivity of paclitaxel and expression levels of hub genes were investigated by cell counting kit-8 assay, flow cytometry and qPCR. RESULTS A total of 16 Gansui active ingredients and 337 targets were collected, of which 298 targets overlapped with NSCLC-related genes. STAT3, EGFR, GRB2, AKT2, AKT3 and PIK3CA were identified as hub genes. The components in Gansui, including kidjoranin 3-O-β-digitoxopyranoside, cynotophylloside B, 13-Oxyingenol-dodecanoate, and kidjolanin had good binding affinity with the hub targets. Kidjolanin inhibited the viability of NSCLC cells, promoted apoptosis and inhibited the expression of hub genes. Kidjolanin also enhanced the proliferation inhibition and apoptosis of NSCLC cells induced by paclitaxel. DISCUSSION AND CONCLUSION Gansui exerts anti-NSCLC effects via multiple downstream targets, implying its potential in NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoxu Yang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Li N, Xue W, Wang C, Fan X, Yu J. The double face of licorice-kansui herb pair: Cure or curse, depending on the combining ratio and mediated by hydrogen sulfide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:155692. [PMID: 39631294 DOI: 10.1016/j.phymed.2024.155692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The safety and efficacy of herbal medicines including traditional Chinese medicine (TCM) has been one of the major scientific problems in the medical field. In TCM prescriptions, reasonable herbal combinations bring stronger efficacy and low risk of toxicity. However, the rules and mechanisms for herbal combinations are far from complete understood yet. PURPOSE In this study, we investigated the efficacy-toxicity transformation of the licorice-kansui herbal combination under clinical equivalent doses, and study the inside mechanisms. STUDY DESIGN Licorice-kansui or glycyrrhetinic acid-kansuinine A combinations of different combining ratio were given to malignant pleural effusion mice as well as the IEC-6 and S-180 cells. METHODS The therapeutic and toxic effects were characterized by various indicators; the chemical changes were analyzed by LC-MS method; the role of H2S was also studied through its inhibitors. RESULTS Low-proportion of licorice combined with kansui exerted comparable therapeutic effects to cisplatin, by reducing pleural effusion, promoting respiration, increasing urine volume, protecting lung tissue, and inhibiting tumor cells by inducing oxidative stress and apoptosis. On the other hand, high-proportion of licorice combined with kansui had poor therapeutic effect but induced oxidative stress, inflammation and tissue damages, especially to the small intestine. This efficacy-toxicity transformation was also reproduced by the glycyrrhetinic acid-kansuinine A combination on IEC-6 epithelial cells and S-180 tumor cells. The transformation was not simply caused by the in-solution solubilization effects of licorice during co-decocted with kansui. Furthermore, the therapeutic and toxic effects were both highly related to the hydrogen sulfide level and its anabolic enzymes, cystathionine-gamma-lyase (CSE) or cystathionine beta-synthase (CBS), either in tissues or in-vitro cells. By inhibiting CSE or CBS, all the therapeutic or toxic effects were abolished both in-vivo and in-vitro. Moreover, the intestinal sulfide-reducing bacteria Desulfovibrio and body drug-metabolism were also important variants influencing the efficacy-toxicity transformation of licorice-kansui herbal combination. CONCLUSION This study comprehensively uncovered the rules of licorice-kansui herbal combination, and for the first time confirmed that H2S plays a crucial role in mediating its efficacy-toxicity transformation. Our study not only supports the reasonable clinical usage of these two herbs but also provide ideas and methods for the study of other herb pairs in TCM prescriptions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Wen Xue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chaoping Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiuhe Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jingao Yu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
5
|
Li Y, Deng X, Xiong H, Hu Q, Chen Y, Zhang W, Ma X, Zhao Y. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: a comprehensive review. Front Pharmacol 2023; 14:1278014. [PMID: 37915415 PMCID: PMC10617680 DOI: 10.3389/fphar.2023.1278014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In Chinese medicine, the primary considerations revolve around toxicity and effect. The clinical goal is to achieve maximize effect while minimizing toxicity. Nevertheless, both clinical and experimental research has revealed a distinct relationship between these two patterns of action in toxic Traditional Chinese Medicines (TCM). These TCM often exhibit characteristic "double-sided" or "multi-faceted" features under varying pathological conditions, transitioning between effective and toxic roles. This complexity adds a layer of challenge to unraveling the ultimate objectives of Traditional Chinese medicine. To address this complexity, various hypotheses have been proposed to explain the toxicity and effect of Traditional Chinese Medicines. These hypotheses encompass the magic shrapnel theory for effect, the adverse outcome pathway framework, and the indirect toxic theory for toxicity. This review primarily focuses on high-, medium-, and low-toxicity Traditional Chinese Medicines as listed in Chinese Pharmacopoeia. It aims to elucidate the essential intrinsic mechanisms and elements contributing to their toxicity and effectiveness. The critical factors influencing the mechanisms of toxicity and effect are the optimal dosage and duration of TCM administration. However, unraveling the toxic-effect relationships in TCM presents a formidable challenge due to its multi-target and multi-pathway mechanisms of action. We propose the integration of multi-omics technology to comprehensively analyze the fundamental metabolites, mechanisms of action, and toxic effects of TCM. This comprehensive approach can provide valuable insights into the intricate relationship between the effect and toxicity of these TCM.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang Z, Xu Y, Shen A, Fu D, Liu D, Liu Y, Liang X. Offline two-dimensional normal-phase × reversed-phase liquid chromatography coupled with high-resolution mass spectrometry for comprehensive analysis of chemical constituents in Euphorbia kansui. J Chromatogr A 2023; 1693:463897. [PMID: 36857981 DOI: 10.1016/j.chroma.2023.463897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Euphorbia kansui is the dried root of Euphorbia kansui T. N. Liou ex T.P. Wang. Its main chemical components are diterpenoids, triterpenes, and volatile oil. In this study, an offline two-dimensional (2D) normal-phase × reversed-phase liquid chromatography method coupled with quadrupole time-of-flight mass spectrometry was established to comprehensively analyze the chemical constituents in E. kansui. A total of 240 compounds were identified from the E. kansui extract, including 218 diterpenoids (77 known, 141 new), 16 known volatile oils, and six known triterpenes. The relationship between the structural characteristics and tandem mass spectroscopy fragments of diterpenoids was further analyzed. Based on the characteristic fragment ions, 141 new diterpenoids were determined as 118 ingenane diterpenoids and 23 jatrophane diterpenoids. The newly identified diterpenoids may provide lead compounds for drug discovery, improving the medicinal value of E. kansui.
Collapse
Affiliation(s)
- Zihui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Dian Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
7
|
Feng X, Li J, Li H, Chen X, Liu D, Li R. Bioactive C21 Steroidal Glycosides from Euphorbia kansui Promoted HepG2 Cell Apoptosis via the Degradation of ATP1A1 and Inhibited Macrophage Polarization under Co-Cultivation. Molecules 2023; 28:2830. [PMID: 36985801 PMCID: PMC10058894 DOI: 10.3390/molecules28062830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Euphorbia kansui is clinically used for the treatment of esophageal cancer, lung cancer, cancerous melanoma, asthma, pleural disorders, ascites, and pertussis, among other conditions. In this study, 12 steroids were obtained and identified from E. kansui, and cynsaccatol L (5), which showed the best effects in terms of inhibiting the proliferation of HepG2 cells and the immune regulation of macrophages. Furthermore, 5 induced typical apoptotic characteristics in HepG2 cells, such as morphological changes and the caspase cascade, as well as inducing autophagy-dependent apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. The antitumor mechanism of 5 might be related to promoting the endocytosis and degradation of ATP1A1 protein and then down-regulating the downstream AKT and ERK signaling pathways. Furthermore, the antiproliferation effect of 5 in co-cultivation with macrophages was investigated, which showed that 5 promoted the apoptosis of HepG2 cells by modulating the release of inflammatory cytokines, such as TNF-α and IFN-γ; regulating the M2-subtype polarization of macrophages; promoting the phagocytosis of macrophages. In conclusion, 5 exerted anti-proliferative effects by promoting the degradation of ATP1A1 and inhibiting the ATP1A1-AKT/ERK signaling pathway in HepG2. Furthermore, it regulated macrophage function in co-cultivation, thereby further exerting adjuvant anti-HepG2 activity.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jianchun Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongmei Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuanqin Chen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongtao Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Liu L, Li J, Lv J, Jiang H, Chen FE. Detoxification mechanism of vinegar-processed Kansui revealed by systematic phytochemical analysis using ultrahigh-performance liquid chromatography diode array detection tandem mass spectrometry, ultrahigh-performance liquid chromatography high-resolution mass spectrometry and in silico drug target identification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9332. [PMID: 35716385 DOI: 10.1002/rcm.9332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The dried roots of Euphorbia kansui L., known as Kansui, are used to treat ascites and edema in traditional Chinese medicine. However, the toxicity of this herb has seriously restricted its clinical application. A unique vinegar-processing method has been used to reduce its toxicity since the time of ancient China. However, the detoxification mechanism underlying such vinegar processing has not been fully revealed. To find the answer, the process-induced changes in components should be carefully investigated. METHODS We performed a systematic analysis of chemical components in raw and vinegar-processed Kansui using ultrahigh-performance liquid chromatography (UHPLC) diode array detection tandem mass spectrometry and UHPLC high-resolution mass spectrometry. Thirty-one chemical components in raw and vinegar-processed Kansui were found, the chemical structures of 28 components among them were proposed and the process-induced changes in components were then investigated. RESULTS A comprehensive conclusion about the process-induced chemical change was drawn. It was found that jatrophane-type diterpenoids decreased markedly after vinegar processing, while ingenane-type diterpenoids were retained during vinegar processing. In silico drug target identification gave hints that jatrophane-type diterpenoids, which decreased markedly during vinegar processing, may have more intense toxicity involving cholinesterase and mitogen-activated protein kinases, while ingenane-type diterpenoids, which were retained during vinegar processing, may have a more intense therapeutic effect involving carbonic anhydrase. CONCLUSIONS The possible detoxification mechanism of vinegar-processed Kansui is presented. The research has significance for the therapeutic/toxic chemical basis of Kansui. Also, it has significance for drug discovery from terpenoids within the herb.
Collapse
Affiliation(s)
- Lian Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, China
| | - Jiangchun Li
- Hubei Key Laboratory of Forensic Science, Hubei University of Police, Wuhan, China
| | - Jizhong Lv
- Physical and Chemical Investigation Laboratory, Hubei Province Public Security Department, Wuhan, Hubei, China
| | - Haipeng Jiang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chen Z, Zhao K, Jia Y. Bioinspired Total Synthesis of (+)-Euphorikanin A. Angew Chem Int Ed Engl 2022; 61:e202200576. [PMID: 35165997 DOI: 10.1002/anie.202200576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/12/2022]
Abstract
We have achieved a bioinspired total synthesis of (+)-euphorikanin A, which possesses an intriguing and complex 5/6/7/3-fused tetracyclic skeleton bearing a bridged [3.2.1]-γ-lactone moiety. Key transformations include stereoselective alkylation and aldol condensation to install the main stereocenters, an intramolecular nucleophile-catalyzed aldol lactonization of carboxylic acid-ketone to assemble the five-membered ring, a McMurry coupling to construct the seven-membered ring, and a biomimetic benzilic acid type rearrangement to form the bridged [3.2.1]-γ-lactone moiety.
Collapse
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Kuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| |
Collapse
|
10
|
Chen Z, Zhao K, Jia Y. Bioinspired Total Synthesis of (+)‐Euphorikanin A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Kuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
11
|
Jiang X, Liu Q, Xue S. LC-MS/MS method for determination of kansuinine a in rat plasma and its application to a rat pharmacokinetic study. Biomed Chromatogr 2021; 36:e5282. [PMID: 34806205 DOI: 10.1002/bmc.5282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Kansuinine A is a macrocyclic jatrophane diterpene isolated from the plant Euphorbia kansui Liou. It exhibits many pharmacological activities including cytoxic, antitumor, antiallergic and proinflammatory effects. In the present study, a simple and sensitive LC-MS/MS method was established and validated for the determination of kansuinine A in rat plasma. After methanol-mediated protein precipitation, chromatographic separation was achieved on an Acquity BEH C18 column (2.1 × 100 mm, 1.7 μm) using acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. Kansuinine A and IS were quantified in negative multiple reaction monitoring mode with ion transitions at m/z 731.1-693.2 for kansuinine A and m/z 723.2-623.1 for IS. The method showed excellent linearity over the range 1-500 ng/ml. The intra- and inter-day precisions (relative standard deviation) were 2.13-4.28 and 3.83-7.67%, respectively, whereas accuracy (relative error) ranged from -4.17 to 3.73%. The extraction recovery, stability and matrix effect met the requirement of the regulations issued by the US Food and Drug Administration. The validated method was successfully applied to the pre-clinical pharmacokinetic study of kansuinine A in rats after oral administration (20 mg/kg) and intravenous administration (2 mg/kg). This study provides valuable reference for the further study of E. kansui liou, especially for the drug development and clinical application of kansuinine A.
Collapse
Affiliation(s)
- Xianglan Jiang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingwang Liu
- Institute of Heath and Medical Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Shiyang Xue
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Wang S, Li J, Liu D, Yang T, Chen X, Li R. Ingenane and jatrophane-type diterpenoids from Euphorbia kansui with multidrug resistance reversal activity. PHYTOCHEMISTRY 2021; 188:112775. [PMID: 34015626 DOI: 10.1016/j.phytochem.2021.112775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Bioassay-guided purification on the ethanolic extract of the roots of Euphorbia kansui Liou ex S.B.Ho (Euphorbiaceae) led to the isolation of one unreported ingenane-type (euphorksol A) and six unreported jatrophane-type (euphorksjats A-F) diterpenoids, together with twenty-five known diterpenoids. Their structures were elucidated based on extensive NMR analysis and high-resolution mass spectrometry. Euphorksol A is a rare example of an ingenane-type diterpenoid with a 6,7-expoxy fragment. All compounds were examined for cytotoxicity against adriamycin (Adr)-sensitive HepG-2 and Adr-resistant HepG-2/Adr cell lines, but none showed significant activity. Then, all isolates were evaluated for their ability to reverse multidrug resistance (MDR). 6β,7β-Epoxy-3β,4β,5β-trihydroxyl-20- deoxyingenol and 3,5,7,15-tetraacetoxy-9-nicotinoyloxy-14-oxojatropha-6(17),11-diene showed significant MDR reversal activity in HepG-2/Adr cells (reversal fold: RF = 186.4 and 143.8, respectively) versus the positive control verapamil (Ver, RF = 93.7). Euphorksol A and kansuinin B exhibited moderate MDR reversal activity (RF = 57.4 and 68.9, respectively). These compounds are the first ingenane-type diterpenoids reported to show MDR reversal activity, which will provide new insights toward the development of MDR regulatory agents.
Collapse
Affiliation(s)
- Siyi Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianchun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Dan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Tao Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xuanqin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
13
|
Classen MJ, Böcker MNA, Roth R, Amberg WM, Carreira EM. Enantioselective Total Synthesis of (+)-Euphorikanin A. J Am Chem Soc 2021; 143:8261-8265. [PMID: 34043906 DOI: 10.1021/jacs.1c04210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We disclose the first total synthesis of (+)-euphorikanin A, an ingenane-derived natural product featuring an unprecedented 5/6/7/3-fused tetracyclic skeleton. Key to the approach is a SmI2-mediated ketyl-enoate reaction that leads to the formation of two rings in a single step. The polarity-reversed cyclization proceeds in excellent yield and high diastereoselectivity. Access to ring B is effected late in the synthesis by implementation of a number of chemoselective transformations, including in situ generation of a vinyl lithium species and subsequent intramolecular attack onto an α-ketolactone.
Collapse
Affiliation(s)
- Moritz J Classen
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Markus N A Böcker
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Remo Roth
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Willi M Amberg
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Erick M Carreira
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Zhu JY, Xiao NQ, Tan ZJ. Research progress on intestinal mucosal injury induced by traditional Chinese medicine. Shijie Huaren Xiaohua Zazhi 2021; 29:449-454. [DOI: 10.11569/wcjd.v29.i9.449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jia-Yuan Zhu
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Nen-Qun Xiao
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
15
|
Zhang Q, Ju YH, Zhang Y, Wang K, Zhang M, Chen PD, Yao WF, Tang YP, Wu JH, Zhang L. The water expelling effect evaluation of 3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol and ingenol on H22 mouse hepatoma ascites model and their content differences analysis in Euphorbia kansui before and after stir-fried with vinegar by UPLC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113507. [PMID: 33098970 DOI: 10.1016/j.jep.2020.113507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malignant ascites (MA) effusion is mainly caused by hepatocellular, ovarian, and breast cancer etc. It has been reported that Euphorbia kansui (EK), the root of Euphorbia kansui S.L.Liou ex S.B.Ho, possessing a therapeutic effect on MA. However, the clinical applications of EK are seriously restricted for its severe toxicity. Although studies demonstrated that vinegar-processing can reduce the toxicity and retain the water expelling effect of EK, its specific mechanism remains unknown. AIM OF THE STUDY This study aims to explore the underlying mechanisms of toxicity reduction without compromising the pharmacological effects of EK stir-fried with vinegar (VEK). MATERIALS AND METHODS 3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol (3-O-EZ), a major diterpenoid of EK, could convert into ingenol after processing EK with vinegar. The H22 mouse hepatoma ascites model was replicated, and were given 3-O-EZ and ingenol seven days (110.14, 50.07 and 27.54 mg/kg). The histopathological observation, serum liver enzymes, serum Renin-Angiotensin-Aldosterone System (RAAS) levels, ascites volumes, pro-inflammatory cytokines levels and H22 cells apoptosis in ascites were examined. Then the intestine (Aquaporin 8, AQP8) and kidney (Aquaporin 2, AQP2; Vasopressin type 2 receptor, V2R) protein expression were detected, as well as the metabolomics of serum were analyzed. Finally, the content of 3-O-EZ and ingenol in EK and VEK were investigated. RESULTS 3-O-EZ and ingenol can relieve hepatic and gastrointestinal injuries, reduce ascites volumes, enhance the H22 cells apoptosis, ameliorate abnormal pro-inflammatory cytokines and RAAS levels, and down-regulate the expression of AQP8, AQP2, V2R. The involved metabolic pathways mainly included glycerophospholipid metabolism and arachidonic acid metabolism. And the decreasing rate of 3-O-EZ in VEK was 19.14%, the increasing rate of ingenol in VEK was 92.31%. CONCLUSION 3-O-EZ and ingenol possess significant effect in treating MA effusion, while ingenol has lower toxicity compared with 3-O-EZ. And provide evidence for the mechanism of attenuation in toxicity without compromising the pharmacological effects of VEK.
Collapse
Affiliation(s)
- Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yong-Hui Ju
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kan Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Pei-Dong Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Jian-Hua Wu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Zhang Q, Li ZL, Zhang Y, Wang K, Zhang M, Chen PD, Yao WF, Tang YP, Wu JH, Zhang L. Effect of the vinegar-process on chemical compositions and biological activities of Euphorbia kansui: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112557. [PMID: 31931159 DOI: 10.1016/j.jep.2020.112557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) the root of Euphorbia kansui S.L.Liou ex S.B.Ho (EK), is used for treating edema and ascites but is also of toxicological concerns. And the clinical applications of EK have been seriously restricted for its severe toxicity. To reduce its toxicity, a commonly used clinical practice is processing it with vinegar. AIM OF THE REVIEW This review aimed to summarize and discuss updated information on biological activities and phytochemistry of EK before and after vinegar-processing, and provide feasible insights for further research on the chemical composition, toxicity and pharmacological effects of EK before and after vinegar-processing. MATERIALS AND METHODS The relevant information on chemical compositions and biological activities of EK before and after vinegar-processing was collected from scientific databases (Google Scholar, PubMed, CNKI, SpringerLink, Web of Science, Wiley Online Library and SciFinder). Additionally, published and unpublished Ph.D. and MSc. dissertations were also obtained from online databases. RESULTS AND DISCUSSIONS Diuretic and purgative effect of EK are well documented pharmacologically as are acute, irritant and organic toxic effects. Some of about terpenoids reported have antiproliferative effects on cancer cells and potential antiviral effect. After processing with vinegar, the contents of terpenoids mostly were reduced (ingenane and jatrophane type) with some new compounds being generated (unclear). Also, the toxicity of EK was decreased (using mice, rats and zebrafish embryos model), while the diuretic and purgative effects were retained (using cancerous ascites model rats and mice). CONCLUSIONS While some evidence exists for the reduction of toxicity without compromising the pharmacological effects of EK after vinegar processing, the specific mechanism of action remains unknown. Consequently, further research is necessary to investigate the mechanisms and the relationship between vinegar processing and changes in the chemical composition as well as pharmacological effects/toxicity. This is essential before a safe clinical use can be endorsed.
Collapse
Affiliation(s)
- Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhen-Lan Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kan Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Pei-Dong Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Jian-Hua Wu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Meng XH, Wang K, Chai T, Guo ZY, Zhao M, Yang JL. Ingenane and jatrophane diterpenoids from Euphorbia kansui and their antiproliferative effects. PHYTOCHEMISTRY 2020; 172:112257. [PMID: 31986448 DOI: 10.1016/j.phytochem.2020.112257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
In this study, fourteen ingenane-type and nine jatrophane-type diterpenoids were isolated from Euphorbia kansui, including seven undescribed compounds. Kansuingenol A-C have the 6,7-vicinal diol moiety, and Kansuijatrophanol A and B possess the 11,12-vicinal diol moiety, both of which are rarely reported. 3,4-(Methylenedioxy) cinnamyl moiety was found for the first time in jatrophane-type diterpenoids, as shown in Kansuijatrophanol C and D. The absolute configurations of seven undescribed compounds have been analyzed and assigned by the modified Mosher's method, Mo2(OAc)4-induced circular dichroism (ICD) method, and CD exciton chirality method. All compounds were screened for their antiproliferative effects against HepG2, MCF-7 and DU145 cell lines. Regarding the HepG2 cells, Kansuijatrophanol C exhibited the most promising inhibition with the IC50 value of 9.47 ± 0.31 μM. Regarding the MCF-7 and DU145 cells, Kansuijatrophanol D exhibited the most promising inhibition with the IC50 values of 6.29 ± 0.18 and 4.19 ± 0.32 μM, respectively.
Collapse
Affiliation(s)
- Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Kai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Zhi-Ying Guo
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Ming Zhao
- Department of Cognitive Science, Institute of Cognition and Brain Sciences, Beijing, People's Republic of China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| |
Collapse
|
18
|
Zhang Y, Lou JW, Kang A, Zhang Q, Zhou SK, Bao BH, Cao YD, Yao WF, Tang YP, Zhang L. Kansuiphorin C and Kansuinin A ameliorate malignant ascites by modulating gut microbiota and related metabolic functions. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112423. [PMID: 31765764 DOI: 10.1016/j.jep.2019.112423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia kansui is a toxic Chinese herbal medicine and exhibits promising treatment to the malignant ascites (MA) in its traditional use. Ingenane-type and jastrophane-type diterpenes are demonstrated to be responsible for the toxicity and efficacy of kansui. Two representative compounds, kansuiphorin C (KPC) and kansuinin A (KA) in each type were proved to effectively reduce the ascites. The biological and toxicological effects are closely associated with the gastrointestinal tract, but the possible mechanism and related metabolic functions of KPC and KA treating MA through modulating the gut microbiota remain unclear. AIM OF THE STUDY To investigate the possible mechanism and related metabolism of KPC and KA ameliorating malignant ascites through modulating gut microbiota. MATERIALS AND METHODS MA rats and normal rats were divided into different groups and administrated with KPC, KA, and positive drug, respectively. 16S rDNA gene sequencing and metagenomes analysis combined with the quantification of short-chain fatty acids of feces were performed to reflect the modulation of gut microbiota. Then, the metabolites of KPC and KA in rat feces under the normal and pathological circumstances were detected by ultra-fast liquid chromatography coupled with MS/MS detector (UFLC-MS/MS) to explore the in-vivo bacterial biotransformation. RESULTS KPC and KA were modulatory compounds for gut microbiota. The richness of Lactobacillus and the decreased abundance of Helicobacter involved in the carbohydrate metabolism and amino acid metabolism could be responsible for their prohibitory effects on malignant ascites. KPC exhibited stronger modulation of gut microbiota through making the abundance of Helicobacter about 3.5 times lower than KA. Besides, in-vivo microbial biotransformation of KPC and KA contained oxidation, hydrolysis, dehydration, and methylation to form metabolites of lower polarity. Besides, at the dosage of 10 mg kg-1, the toxicity of both compounds had weaker influences on the gut microbiota of normal rats. CONCLUSION KPC and KA could ameliorate malignant ascites by modulating gut microbiota mainly containing the increase of Lactobacillus and the decrease of Helicobacter and related carbohydrate and amino acid metabolism, providing a basis for their promising clinical usage.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Jian-Wei Lou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - An Kang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Shi-Kang Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yu-Dan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, PR China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing, 210023, PR China.
| |
Collapse
|
19
|
Chen YY, Shen J, Tang YP, Yu JG, Wang J, Yue SJ, Yang J, Chen JQ, Feng LM, Zhu ZH, Tao WW, Zhang L, Duan JA. Elucidating the interaction of kansui and licorice by comparative plasma/tissue metabolomics and a heatmap with relative fold change. J Pharm Anal 2019; 9:312-323. [PMID: 31929940 PMCID: PMC6951493 DOI: 10.1016/j.jpha.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/13/2019] [Accepted: 05/29/2019] [Indexed: 11/25/2022] Open
Abstract
Although compatibility is highly advocated in traditional Chinese medicine (TCM), inappropriate combination of some herbs may reduce the therapeutic action and even produce toxic effects. Kansui and licorice, one of TCM "Eighteen Incompatible Medicaments", are the most representative cases of improper herbal combination, which may still be applied simultaneously under given conditions. However, the potential mechanism of their compatibility and incompatibility is unclear. In the present study, two different ratios of kansui and licorice, representing their compatibility and incompatibility respectively, were designed to elucidate their interaction by comparative plasma/tissue metabolomics and a heatmap with relative fold change. As a result, glycocholic acid, prostaglandin F2a, dihydroceramide and sphinganine were screened out as the principal alternative biomarkers of compatibility group; sphinganine, dihydroceramide, arachidonic acid, leukotriene B4, acetoacetic acid and linoleic acid were those of incompatibility group. Based on the values of biomarkers in each tissue, the liver was identified as the compatible target organ, while the heart, liver, and kidney were the incompatible target organs. Furthermore, important pathways for compatibility and incompatibility were also constructed. These results help us to better understand and utilize the two herbs, and the study was the first to reveal some innate characters of herbs related to TCM "Eighteen Incompatible Medicaments".
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Juan Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Gao Yu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jing Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
20
|
Zhao C, Jia Z, Li E, Zhao X, Han T, Tian J, Li F, Zou D, Lin R. Hepatotoxicity evaluation of Euphorbia kansui on zebrafish larvae in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152959. [PMID: 31132752 DOI: 10.1016/j.phymed.2019.152959] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Euphorbia kansui is effective in treating various diseases, such as ascites and edema, but its liver toxicity is a major obstacle in its wide use in the clinic. However, further investigations have suggested that Euphorbia kansui can cause liver injury. HYPOTHESIS The study aims to investigate the effect of Euphorbia kansui exposure on zebrafish, and explain the underlying toxicity mechanisms from a comprehensive perspective. STUDY DESIGN The 4dpf zebrafish larvae were exposed to Euphorbia kansui at a sub-lethal concentration. METHODS We evaluated the effect of Euphorbia kansui on the ultrastructure and function of the liver, apoptosis of liver cells by PCR and western blot, and metabolic profile by GC-MS based on sub-lethal concentrations. RESULTS Our results suggested Euphorbia kansui could lead to liver injury and significant alteration of the metabolomics of the zebrafish larvae in sub-lethal concentration conditions. It could also induce alterations in liver microstructure, hepatic function, gene expression and protein associated with the apoptosis process, as well as endogenous metabolism. KEGG pathway analysis identified some biological processes on the basis of different metabolisms and their associated processes especially for amino acid metabolism. CONCLUSION The results bring us closer to an in-depth understanding of the toxic effects of Euphorbia kansui on zebrafish liver, which will be significantly helpful in effectively guiding safer clinical application of this herb in the clinic. Furthermore, our results also showed the zebrafish model is reliable for evaluation of Euphorbia kansui extract hepatotoxicity and as a methodological reference for the evaluation of Traditional Chinese Medicine with underlying liver toxicity.
Collapse
Affiliation(s)
- Chongjun Zhao
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China
| | - Zhe Jia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China
| | - Erwen Li
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China
| | - Xia Zhao
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China
| | - Ting Han
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China
| | - Jinghuan Tian
- CCRF (Beijing) Incorporated, Shimao International Center Office Building One, Room, 806, Gongti North Road, Chaoyang District, Beijing, PR China
| | - Farong Li
- Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shanxi Normal University, Xi'an, PR China
| | - Dixin Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, PR China.
| | - Ruichao Lin
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing 102488, PR China.
| |
Collapse
|
21
|
Liu YT, Hsiao CH, Tzang BS, Hsu TC. In vitro and in vivo effects of traditional Chinese medicine formula T33 in human breast cancer cells. Altern Ther Health Med 2019; 19:211. [PMID: 31409331 PMCID: PMC6693224 DOI: 10.1186/s12906-019-2630-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Background Breast cancer is the leading cause of cancer-related death in women worldwide. Although traditional Chinese medicine (TCM) is commonly used by patients with breast cancer, little is known about TCM prescriptions for breast cancer. This study investigated the effects of a new TCM formula, T33, comprising Radix Kansui, Rheum rhabarbarum, Paeonia lactiflora, Jiangbanxia, and Zhigancao on breast cancer cells in vitro and in vivo. Methods To evaluate the effects of T33 on human breast cancer, HMEpiC, MDA-MB231 and MCF-7 cells were treated with different concentrations of T33 and then analyzed using MTT and Transwell migration assays. To elucidate the involvement of autophagy in the T33-induced death of MDA-MB231 and MCF-7 cells, immunofluorescence staining with LC3-II-specific antibodies was performed. Tumor xenografts were generated by subcutaneously injecting either MDA-MB231 or MCF-7 cells into BALB/c nude mice to determine the effects of T33 on these cell lines in vivo. Results The experimental results revealed that 0.1 mg/mL, 0.5 mg/mL, 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33 significantly inhibited the proliferation and invasion of MDA-MB231 and MCF-7 cells. Moreover, significant autophagy was observed in MDA-MB231 and MCF-7 cells in the presence of 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33. An animal study further revealed that both low (200 mg/kg) and high (600 mg/kg) doses of T33 inhibited the proliferation of xenografted breast cancer cells in BALB/c nude mice. Conclusion These findings demonstrate for the first time that T33 has potential in the treatment of breast cancer owing to its antiproliferative effects and induction of autophagy.
Collapse
|
22
|
Determination of kansuiphorin C and kansuinin A in rat feces using UFLC-MS/MS and its application in the comparative excretion study on normal and malignant ascites rats. J Pharm Biomed Anal 2019; 170:254-263. [DOI: 10.1016/j.jpba.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 01/16/2023]
|
23
|
Yu J, Liu Y, Guo J, Tao W, Chen Y, Fan X, Shen J, Duan JA. Health risk of Licorice-Yuanhua combination through induction of colonic H2S metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:136-146. [PMID: 30851368 DOI: 10.1016/j.jep.2019.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice and Yuanhua are both famous herbs in Traditional Chinese Medicine (TCM), and their combination is used by some TCM doctors to treat renal and gastrointestinal diseases as well as tumors. On the other hand, the compatibility theory of TCM warns that toxic effects might be triggered by Licorice-Yuanhua combination. The usability of Licorice-Yuanhua combination has long been controversial due to lack of evidence and mechanism illustration. Colonic hydrogen sulfide (H2S) metabolism imbalance is closely related with colonic inflammation, tumor promotion and many other diseases. AIM OF THE STUDY This study was carried out to investigate if licorice-Yuanhua combination could induce potential toxic effects in the aspect of colonic H2S metabolism. MATERIALS AND METHODS Normal mice were treated with high or low doses of Licorice, Yuanhua and Licorice-Yuanhua combination. Fecal H2S concentration was measured by colorimetric method, colon sulfomucin production was compared through tissue staining, fecal microbiota and microbial metagenomes were analyzed by 16S rDNA sequencing and data mining. RESULTS Data shows that although licorice cannot change colonic H2S concentration, it can exacerbate Yuanhua induced H2S rising. Licorice or Yuanhua increases colon sulfomucin production, and their combination further enhances this effect. 16S rDNA sequencing analysis revealed that licorice or Yuanhua has little influence on gut microbiota, however, licorice-Yuanhua combination can impact gut microbiota structural balance and increase the abundance of Desulfovibrio genus and other related genera. Moreover, the combination extensively changes microbial metagenomes, influencing 1172 genes that cannot be changed by individual licorice or Yuanhua. By searching in KEGG database, ten genes are annotated with H2S producing gene, and these genes are remarkably increased by licorice-Yuanhua combination, more significantly than licorice or Yuanhua. CONCLUSIONS This study provides evidences and mechanisms for licorice induced risks, which is related with colonic H2S metabolism disturbance, gut microbiota and microbial metagenomes. More risk assessment should be evaluated when licorice was used in combination with foods, herbs or drugs. The study provides an example where healthy risks can be induced by combination of food additive, herbs or drugs, through regulating gut microbiota and its metagenomes.
Collapse
Affiliation(s)
- Jingao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Yang Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yanyan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712000, China. chenyanyan---
| | - Xiuhe Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Juan Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
24
|
Radix Kansui Stir-Fried with Vinegar Reduces Radix Kansui-Related Hepatotoxicity in Mice via Mitochondrial Pathway. Chin J Integr Med 2019; 27:192-197. [PMID: 31065990 DOI: 10.1007/s11655-019-3023-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate the mechanism of Radix Kansui (RK) stir-fried with vinegar (VRK) decreased hepatotoxicity in mice. METHODS According to a random number table, 40 mice were randomly divided into negative control group (0.5% carboxymethylcellulose sodium, 20 mL/kg), positive control group (0.1% mixture of carbon tetrachloride in soybean oil, 20 mL/kg), RK group (the ethyl acetate extracts of RK, 250 g crude drug/kg) and VRK group (the ethyl acetate extracts of VRK, 250 g crude drug/kg) with 10 mice per group. All mice were administered orally by gavage daily for 7 continuous days. The morphology of liver tissues was examined to assess the liver injury by a transmission electron microscope. Hepatocyte apoptosis in vivo was determined by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nickend labeling (TUNEL) assay. Immunohistochemical technique was adopted to detect the expression of particular antiapoptotic and proapoptotic proteins in the mitochondrial pathways, including B-cell lymphoma (Bcl-2) and caspase-3, as well as the expression of inflammatory mediators, including nuclear factor kappa B (NF- κ B) and intercellular adhesion molecule-1 (ICAM-1). RESULTS Liver injury and hepatocyte apoptosis were observed in RK mice, and the liver injury were significantly reduced in VRK-treated mice. In immunohistochemistry study, compared with the negative control group, RK inhibited dramatically the Bcl-2 protein expression and significantly increased the expression of caspase-3, NF- κ B and ICAM-1 (all P<0.01). Compared with the RK group, VRK group induced significant increase on Bcl-2 protein expression, and decreased the caspase-3, NF- κ B and ICAM-1 protein expression (P<0.05 or P<0.01). CONCLUSION The mechanism of reduced hepatotoxicity of VRK may be associated with the reduced inflammation, regulation of antiapoptotic and proapoptotic mediators in the mitochondrial pathway.
Collapse
|
25
|
Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018; 23:molecules23123246. [PMID: 30544627 PMCID: PMC6322356 DOI: 10.3390/molecules23123246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Euphorbia kansui stir-fried with vinegar (V-kansui) has promising biological activities toward treating malignant ascites with reduced toxicity compared to crude kansui. But the mechanism concerning promoting the excretion of ascites has not been systematically studied. The purpose of this paper was to investigate the possible mechanism of V-kansui in treating malignant ascites, including metabolic pathways and molecular mechanism using an integrated serum and urine metabolomics coupled with network pharmacology. Serum and urine samples of rats were collected and analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A comparison with crude kansui was also made to demonstrate the feasibility of processing. Principle component analysis (PCA) and orthogonal partial least square discriminate analysis (OPLS-DA) were conducted to discriminate the groups, search important variables and reveal the possible pathways. A compound-target-metabolite network was finally constructed to identify the crucial targets to further understand the molecular mechanism. Sixteen significant metabolites contributing to the discrimination of model and control groups were tentatively screened out. They were mainly involved in the arachidonic acid metabolism, steroid hormone biosynthesis and primary bile acid to possibly reduce inflammatory and modulate the renin-angiotensin-aldosterone system to achieve treating malignant ascites. A bio-network starting from the compounds and ending in the metabolites was constructed to elucidate the molecular mechanism. HSP90AA1, ANXA2, PRDX6, PCNA, SOD2 and ALB were identified as the potential key targets that were responsible for the treatment of malignant ascites by the parameter combining the average shortest path length and betweenness centrality. The correlated 17 compounds were considered as the potential active ingredients in V-kansui. In addition, the metabolomics showed that the effect of V-kansui was almost in accordance with crude kansui. These results systematically revealed the mechanism of V-kansui against malignant ascites for the first time using metabolomics coupled with network pharmacology. V-kansui could be a promising safe and therapeutic medicine for the excretion of ascites.
Collapse
|
26
|
Zhu A, Zhang T, Wang Q. The phytochemistry, pharmacokinetics, pharmacology and toxicity of Euphorbia semen. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:41-55. [PMID: 30144497 DOI: 10.1016/j.jep.2018.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia semen, the dried and ripe seed of Euphorbia lathyris Linnaeus, is widely cultivated for traditional medicine use. This semen is used to expel water, help with phlegm retention, promote blood circulation, remove blood stasis, cure tinea and scabies, and treat amenorrhea, snakebites, terminal schistosomiasis, anuria and constipation. AIM OF THE REVIEW This review provides updated, comprehensive and categorized information on the local and traditional uses, phytochemistry, pharmacokinetics, pharmacological activities and toxicity of Euphorbia semen. Future research to deepen the recognition and utilization of Euphorbia semen is proposed. MATERIALS AND METHODS This article conducted a literature review on information about Euphorbia semen in multiple Internet databases, including PubMed, Web of Science, Wiley, Science Direct, Elsevier, ACS publications, SciFinder, Google Scholar and China National Knowledge Internet, until March of 2018. In this manuscript, a number of books, PhD and MSc dissertations, and Chinese Pharmacopeia were also used as references. RESULTS Approximately 240 chemical constituents have been isolated and identified from Euphorbia semen, namely, diterpenoids, coumarins, flavonoids, fatty acids, amino acids, and steroids. Pharmacokinetic study focused on investigating absorption, distribution, metabolism and excretion (ADME). The chemical constituents have extensive pharmacological effects, such as diuresis and anti-hyperuricaemia, anti-inflammation, antiviral, anticancer, antioxidant, antipigmentation, anti-platelet aggregation and anti-allergic activities, as well as hepatoprotection and neuroprotection. The toxicity of Euphorbia semen, including acute toxicity, target organ irritation and cocareinogenic effects, have been reported, and the detoxification methods are reviewed. CONCLUSION Euphorbia semen has extensive pharmacological activity and excellent clinical value, along with intense intestinal irritation. Although plenty of chemical constituents have been isolated and identified, the exact pharmacological and toxicological mechanisms still need to be explored.
Collapse
Affiliation(s)
- An Zhu
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
27
|
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13:60. [PMID: 30524499 PMCID: PMC6278008 DOI: 10.1186/s13020-018-0218-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Traditional Chinese medicines (TCM) have a long history of use because of its potential complementary therapy and fewer adverse effects. However, the toxicity and safety issues of TCM have drawn considerable attention in the past two decades. Metabolomics is an “omics” approach that aims to comprehensively analyze all metabolites in biological samples. In agreement with the holistic concept of TCM, metabolomics has shown great potential in efficacy and toxicity evaluation of TCM. Recently, a large amount of metabolomic researches have been devoted to exploring the mechanism of toxicity induced by TCM, such as hepatotoxicity, nephrotoxicity, and cardiotoxicity. In this paper, the application of metabolomics in toxicity evaluation of bioactive compounds, TCM extracts and TCM prescriptions are reviewed, and the potential problems and further perspectives for application of metabolomics in toxicological studies are also discussed.
Collapse
Affiliation(s)
- Li Duan
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Long Guo
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.,4Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Lei Wang
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, 830001 China
| | - Chen-Meng Zhang
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yu-Guang Zheng
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - E-Hu Liu
- 3State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
28
|
Jiang D, Kang A, Yao W, Lou J, Zhang Q, Bao B, Cao Y, Yu S, Guo S, Zhang Y, Tang Y, Zhang L. Euphorbia kansui fry-baked with vinegar modulates gut microbiota and reduces intestinal toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:26-35. [PMID: 30059729 DOI: 10.1016/j.jep.2018.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/22/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia kansui (EK), a kind of toxic traditional Chinese medicine (TCM), is used in the treatment of edema, ascites and asthma. EK fry-baked with vinegar (VEK) is regularly used to reduce the toxicity in TCM. Previous studies have confirmed that fry-baking with vinegar could significantly reduce the significant gastrointestinal toxicity of EK. The toxic side-effects of EK are closely associated with intestinal tract, but existing research results could not provide practical measures for detoxification in terms of the biological effects of EK fry-baked with vinegar. AIM OF THE STUDY This study aimed to investigate the gastrointestinal toxicity of EK and detoxification of VEK through the regulation of gut microbiota. Thirty male Sprague Dawley (SD) rats were randomly divided equally into 3 groups and received by oral gavage 0.5% CMC-Na (C group), EK (EKC group) or VEK (VEKC group) powder at 680 mg/kg for seven consecutive days. RESULTS The ten toxic components in VEK were reduced significantly compared with those in EK. After fry-baked with vinegar, those side effects associated with VEK were significantly relieved in terms of histopathology and inflammatory injury indices of intestinal tissues, liver function and oxidative damage indices. The toxicity of EK might be highly correlated with Lactobacillus and Blautia genera. In addition, EK fry-baked with vinegar increased the production of short-chain fatty acids (SCFAs), which are regulated by gut microbiota. CONCLUSIONS The proportion of main probiotics increased and potentially pathogenic bacteria decreased after EK was fry-baked with vinegar. It turned out that effective detoxification could be achieved by fry-baking with vinegar.
Collapse
Affiliation(s)
- Dongjing Jiang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianwei Lou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sijia Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Yu J, Guo J, Tao W, Liu P, Shang E, Zhu Z, Fan X, Shen J, Hua Y, Zhu KY, Tang Y, Duan JA. Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:71-82. [PMID: 29198875 DOI: 10.1016/j.jep.2017.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/27/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. AIM OF THE STUDY This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. MATERIALS AND METHODS Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1β, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. RESULTS Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes changes were both confirmed by metabolic profile analysis of fecal lipids, especially cholesterol. CONCLUSIONS Gancao-Gansui combination can impact the gut microbiota diversity and related metabolic functions. Further studies should be carried out when the combination of Gancao-Gansui is used in herbal formulations as this may alter the diversity of the microbiota.
Collapse
Affiliation(s)
- Jingao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiuhe Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juan Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kevin Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
30
|
Therapeutic Effects of Methanol Extract from Euphorbia kansui Radix on Imiquimod-Induced Psoriasis. J Immunol Res 2017; 2017:7052560. [PMID: 28761880 PMCID: PMC5518522 DOI: 10.1155/2017/7052560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/22/2017] [Accepted: 05/07/2017] [Indexed: 01/07/2023] Open
Abstract
The roots of Euphorbia kansui, which belong to the family Euphorbiaceae, have been used as a traditional medicine for the treatment of various diseases such as diabetes, ascites, and leukemia. Recently, it was reported that the methylene chloride fraction of E. kansui radix (EKC) regulated the differentiation of Th17 cells and alleviated the symptoms of Th17-related inflammatory bowel disease. Imiquimod (IMQ), a TLR7/8 agonist, has been used to induce psoriasis in a mouse model. In this study, we evaluated the effect of EKC in an IMQ-induced psoriasis model. EKC effectively inhibited the production of interleukin-17A and interferon-γ in vitro. On this basis, EKC was administered to an animal model of psoriasis. Acanthosis and the infiltration of inflammatory cells into the dermis were significantly reduced by EKC. EKC also inhibited the expression of IL-17A, IL-22, IL-23, IL-12, and RAR-related orphan receptor gamma t (RORγt) in the spleen, skin-draining lymph nodes, and the skin. Additionally, EKC inhibited the activity of dendritic cells but not that of keratinocytes. In conclusion, EKC ameliorated the symptoms of psoriasis through inhibition of Th17 differentiation and activation of dendritic cells. These effects are expected to be beneficial in the treatment and prevention of psoriasis.
Collapse
|
31
|
Shen J, Pu ZJ, Kai J, Kang A, Tang YP, Shang LL, Zhou GS, Zhu ZH, Shang EX, Li SP, Cao YJ, Tao WW, Su SL, Zhang L, Zhou H, Qian DW, Duan JA. Comparative metabolomics analysis for the compatibility and incompatibility of kansui and licorice with different ratios by UHPLC-QTOF/MS and multivariate data analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057:40-45. [PMID: 28499205 DOI: 10.1016/j.jchromb.2017.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023]
Abstract
Kansui, the root of Euphorbia kansui T.N. Liou ex T.P. Wang (Euphorbiaceae), is a well-known poisonous traditional Chinese medicine (TCM). However, many monographs of TCM indicated that it cannot be co-used with licorice, as kansui-licorice is a typical "eighteen incompatible" medicaments. Our previous studies have indicated that kansui was effective in treating malignant pleural effusion (MPE), and the efficacy could be weakened by the co-use of licorice, even causing serious toxicity at the given ratio. Nevertheless, the actual mechanisms of their dosage-toxicity-efficacy relationship need to be well clarified. The present study aimed to investigate the effect of individual and combined use of kansui and licorice on MPE rats, and explain the underlying mechanisms from a metabolomic perspective. Urine samples were analyzed by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Partial least-squares discriminate analysis (PLS-DA) models were built to evaluate the interaction between kansui and licorice. Seven potential biomarkers contribute to the separation of model group and control group were tentatively identified. And selenoamino acid metabolism and nicotinate and nicotinamide metabolism with the impact-value 0.31 and 0.24, respectively, were filtered out as the most important metabolic pathways. Kansui and kansui-licorice at a ratio of 4:1 can treat MPE rats by adjusting abnormal metabolic pathways to the normal state, while it may have opposite result with kansui-licorice 1:4. The different influences to the two metabolic pathways may partially explain the dosage-toxicity-efficacy relationship of kansui-licorice with different ratios. The results could offer valuable insights into the compatibility property changes for the two herbs.
Collapse
Affiliation(s)
- Juan Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jun Kai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - An Kang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Li-Li Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinse Medicine, University of Macau, Macau, China
| | - Yu-Jie Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
32
|
Shen L, Zhang SQ, Liu L, Sun Y, Wu YX, Xie LP, Liu JC. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells. Med Sci Monit 2017; 23:223-237. [PMID: 28087861 PMCID: PMC5256368 DOI: 10.12659/msm.902704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.
Collapse
Affiliation(s)
- Lei Shen
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland).,Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Shan-Qiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Lei Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Yu Sun
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Yu-Xuan Wu
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Li-Ping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Ji-Cheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|