1
|
Zeng Z, Wang X, Cui L, Wang H, Guo J, Chen Y. Natural Products for the Treatment of Pulmonary Hypertension: Mechanism, Progress, and Future Opportunities. Curr Issues Mol Biol 2023; 45:2351-2371. [PMID: 36975522 PMCID: PMC10047369 DOI: 10.3390/cimb45030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a lethal disease due to the remodeling of pulmonary vessels. Its pathophysiological characteristics include increased pulmonary arterial pressure and pulmonary vascular resistance, leading to right heart failure and death. The pathological mechanism of PH is complex and includes inflammation, oxidative stress, vasoconstriction/diastolic imbalance, genetic factors, and ion channel abnormalities. Currently, many clinical drugs for the treatment of PH mainly play their role by relaxing pulmonary arteries, and the treatment effect is limited. Recent studies have shown that various natural products have unique therapeutic advantages for PH with complex pathological mechanisms owing to their multitarget characteristics and low toxicity. This review summarizes the main natural products and their pharmacological mechanisms in PH treatment to provide a useful reference for future research and development of new anti-PH drugs and their mechanisms.
Collapse
Affiliation(s)
- Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongjuan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| |
Collapse
|
2
|
Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H, Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 2022; 7:303. [PMID: 36045132 PMCID: PMC9433407 DOI: 10.1038/s41392-022-01097-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
4
|
Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: Molecular Insight into Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7845503. [PMID: 35707273 PMCID: PMC9192195 DOI: 10.1155/2022/7845503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.
Collapse
|
5
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
6
|
Li X, Sun S, Chen D, Yuan T, Chen Y, Wang D, Fang L, Lu Y, Du G. Puerarin attenuates the endothelial-mesenchymal transition induced by oxidative stress in human coronary artery endothelial cells through PI3K/AKT pathway. Eur J Pharmacol 2020; 886:173472. [PMID: 32860809 DOI: 10.1016/j.ejphar.2020.173472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Endothelial-mesenchymal transition (EndMT) is a process in which endothelial cells lose their specific morphology/markers and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in the progression of cardiovascular diseases such as cardiac fibrosis and cardiac dysfunction. Recent study indicated that puerarin could inhibit EndMT against cardiac fibrosis. However, the precise role of puerarin in EndMT and the underlying molecular mechanisms remain unclear. EndMT was induced by H2O2 (150 μM) in human coronary artery endothelial cells (HCAECs). HCAECs were exposed to H2O2 for six days with or without puerarin pretreated 2 h. The protein changes of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA) in HCAECs were detected. The levels of phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) proteins were analyzed by Western Blot. Wound healing and transwell assay were carried out to examine cell chemotaxis. Puerarin mitigated H2O2-induced EndMT as indicated by alleviating the reduced expression of CD31 and VE-cadherin and inhibiting the upregulation of α-SMA and FSP1. Furthermore, the mechanisms study showed that puerarin activated the PI3K/AKT pathway by inhibiting reactive oxygen species and further attenuated EndMT. On the other hand, PI3K inhibitor LY294002 reversed this effect imposed by puerarin. Puerarin alleviated the migration of mesenchymal-like cells through reducing MMPs protein expression. These results implicated that puerarin exhibited cytoprotective effects against H2O2-induced EndMT in HCAECs through alleviating oxidative stress, activating the PI3K/AKT pathway and limiting cell migration.
Collapse
Affiliation(s)
- Xuguang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuchan Sun
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Di Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yucai Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Danshu Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lianhua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
Abdelaziz S, Hassan WHB, Elhassanny AEM, Al-Yousef HM, Elsayed MA, Adel R. Ultra performance liquid chromatography-tandem mass spectrometeric analysis of ethyl acetate fraction from saudi Lavandula coronopifolia Poir and evaluation of its cytotoxic and antioxidant activities. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Introduction: The ethyl acetate fraction of the Saudi Lavandula coronopifolia Poir has been previously reported to have hepatoprotective activity against ethanol-induced oxidative stress. The aim of the current study was to investigate the chemical composition, cytotoxic effect, and antioxidant activities of ethyl acetate fraction of the aerial parts of Saudi L. coronopifolia Poir. Methods: Air dried aerial parts of L. coronopifolia were extracted using 90% ethyl alcohol. The dried extract was suspended in water, defatted with light petroleum and then fractionated with ethyl acetate. The ethyl acetate fraction was subjected to ultra performance liquid chromatography-tandem mass spectrometeric (UPLC-ESI/MS/MS) analysis in a negative ionization mode. The antioxidant activity of the fraction was determined using free radical 2,2-diphyenyl-picrylhydrazyl (DPPH) scavenging assay and its cytotoxic effect against HepG2 (human hepatocarcinoma) and MCF-7 (human breast carcinoma) cells were determined using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) cell viability assay. Results: The major components of the ethyl acetate fraction included carvacrol-O-diglucoside, (34.98%) and trihydroxy ursolic acid (12.07%). Moreover, the DPPH radical scavenging activity of ethyl acetate fraction was measured. The ethyl acetate fraction revealed an antioxidant potential with EC50 17.8 ± 1.3 µg/mL. Additionally, he ethyl acetate fraction showed cytotoxic activity against HepG-2 and MCF-7 cells with IC50=29.3 ± 0.9 µg/mL and 14.6 ± 0.3 µg/mL, respectively. Conclusion: The ethyl acetate fraction of the Saudi L. coronopifolia has antioxidant activity and also cytotoxic activity against breast and liver cancer cells.
Collapse
Affiliation(s)
- Sahar Abdelaziz
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Wafaa H. B. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Ahmed E. M. Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, 27834, USA
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - May A. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Rasha Adel
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
8
|
Jin Y, Yu L, Xu F, Zhou J, Xiong B, Tang Y, Li X, Liu L, Jin W. Pharmacokinetics of Active Ingredients of Salvia miltiorrhiza and Carthamus tinctorius in Compatibility in Normal and Cerebral Ischemia Rats: A Comparative Study. Eur J Drug Metab Pharmacokinet 2020; 45:273-284. [PMID: 31828667 PMCID: PMC7089879 DOI: 10.1007/s13318-019-00597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Dan-Hong injection, which comprises extracts of Salvia miltiorrhiza and Carthamus tinctorius, promotes blood circulation and reduces blood stasis. Combination of S. miltiorrhiza and C. tinctorius is more effective in treating cerebral ischemia than S. miltiorrhiza alone. This study aimed to examine the pharmacokinetic characteristics of four active ingredients of S. miltiorrhiza and C. tinctorius, namely danshensu (DSS), hydroxysafflor yellow A (HSYA), and salvianolic acid A (SAA) and B (SAB) in normal and cerebral ischemia rats. METHODS Normal and cerebral ischemia rats were injected via the tail vein with each active ingredient, and blood was collected through the jaw vein at different time points. The plasma concentration of the compatibility group was analyzed by high-performance liquid chromatography, and pharmacokinetic parameters were determined using Pharmacokinetic Kinetica 4.4 software. RESULTS The pharmacokinetics of the four active ingredients in the normal and cerebral ischemia rats were consistent with a two-compartment model. The area under the concentration-time curve was higher in normal rats than in cerebral ischemia rats, with a highly significant difference for SAA (P < 0.01). Clearance rates were lower in normal rats than in cerebral ischemia rats, with DSS showing the most significant difference (P < 0.01). Furthermore, there were significant differences between normal and cerebral ischemia rats in the distribution phase-elimination half life for DSS, SAA, and HSYA, as well as in the apparent volume of distribution for the central compartment for DSS and HSYA (P < 0.01). The plasma concentrations of the four active ingredients were higher in normal rats than in cerebral ischemia rats. CONCLUSION Cerebral ischemia rats showed higher drug clearance rates and longer retention times than normal rats, which may be due to destruction of the blood-brain barrier during cerebral ischemia-reperfusion. The four active ingredients likely integrated and interacted with each other to affect target sites in the brain to protect against cerebral ischemic injury.
Collapse
Affiliation(s)
- Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000 Zhejiang China
- Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000 Jiangsu China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053 Zhejiang China
| | - Fangfang Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000 Zhejiang China
| | - Jie Zhou
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, No. 219 Moganshan Road, Hangzhou, 310005 Zhejiang China
| | - Bing Xiong
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000 Zhejiang China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000 Zhejiang China
| | - Xiaohong Li
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053 Zhejiang China
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000 Jiangsu China
| | - Weifeng Jin
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
9
|
Wang J, Sun Y, Li Z, Li W, Pang Y, Li J, Wu Q. Discrimination of Salvia miltiorrhiza Bunge from Different Geographical Locations Employing High-Performance Liquid Chromatography, Near-Infrared Fingerprinting Combined with Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8367619. [PMID: 32104609 PMCID: PMC7035550 DOI: 10.1155/2020/8367619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
To evaluate the quality of Salvia miltiorrhiza Bunge, high-performance liquid chromatography-diode array detector (HPLC/UV-PAD), near infrared (NIR) spectroscopy, and chemometrics were used to discriminate nine components of samples from four different geographical locations. HPLC was performed with a C18 (5 μm, 4.6 mm × 250 mm) column and 0.1% formic acid aqueous solution-acetonitrile with a gradient elution system. Orthogonal partial least squares discriminant analysis was used to identify the amounts of salvianolic acid B. NIR was used to distinguish rapidly S. miltiorrhiza Bunge samples from different geographical locations. In this assay, discriminant analysis was performed, and the accuracy was found to be 100%. The combination of these two methods can be used to quickly and accurately identify S. miltiorrhiza Bunge from different geographical locations.
Collapse
Affiliation(s)
- Jiao Wang
- Guizhou Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd, Guiyang 550001, Guizhou, China
| | - Yichun Sun
- Tong Ji Tang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, Guizhou 550018, China
| | - Zhan Li
- Tong Ji Tang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, Guizhou 550018, China
| | - Wei Li
- Guiyang University of Chinese Medicine, Guiyang, Guizhou, 550018, China
| | - Yuanyuan Pang
- Tong Ji Tang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, Guizhou 550018, China
| | - Jiayu Li
- Guizhou Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd, Guiyang 550001, Guizhou, China
| | - Qing Wu
- Guizhou Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd, Guiyang 550001, Guizhou, China
- Guiyang No. 3 Experimental High School, Guiyang, Guizhou 550018, China
| |
Collapse
|
10
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Szwajgier D, Paduch R, Kukuła-Koch W, Polak-Berecka M, Waśko A. Study on Biological Activity of Bread Enriched with Natural Polyphenols in Terms of Growth Inhibition of Tumor Intestine Cells. J Med Food 2019; 23:181-190. [PMID: 31503525 DOI: 10.1089/jmf.2019.0082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A complex plant polyphenolic preparation (PP) was produced from chokeberry, raspberry, wild strawberry, peach, bilberry, apricot, cranberry, and parsley, using ultrafiltration and C18 preparative chromatography. Thirty main compounds were identified in PP (LC-MS), with the highest contribution of cyanidin 3-O-glucoside, p-coumaroyl glucoside, chlorogenic acid, neochlorogenic acid, and isoquercetin. PP was used (at 0.16% m/m) for the production of a sourdough bread (based on rye flour, water, and salt), followed by in vitro digestion. Fluid obtained after PP-enriched bread digestion (EBD fluid) was tested in terms of cytotoxicity, growth inhibition, antioxidant activity, and morphological changes in cancerous intestinal epithelial cells (HT-29) and normal (CCD 841 CoTr). Results show that EBD fluid concentration over 125 μg/mL significantly decreased activity of succinate dehydrogenase in HT-29 cells and reduced their viability of 25%. At this concentration of EBD fluid, modification in cellular morphology was also observed. DPPH analysis revealed that the highest antioxidant activity was observed at concentration of 75 μg/mL, both PP and EBD fluid. Our results show that an introduction of PP into relatively low-polyphenolic, baking products should be carefully considered because polyphenols still retain its biological activity. Antioxidant activity of polyphenols is one of the mechanisms that explains the observed effect of inhibiting the growth of colon cancer cells.
Collapse
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.,Department of General Ophthalmology, Medical University, Lublin, Poland
| | - Wirginia Kukuła-Koch
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Lublin, Poland
| |
Collapse
|
12
|
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol 2019; 10:715. [PMID: 31417401 PMCID: PMC6682706 DOI: 10.3389/fphar.2019.00715] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Therapeutic and Pharmacology Department, Health and Human Science Research, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pedro Majano
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Toméro
- Department and Nephrology, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Rafael Selgas
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Manuel López-Cabrera
- Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Guadalupe González Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Lu X, Gong J, Dennery PA, Yao H. Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem Pharmacol 2019; 168:100-107. [PMID: 31251941 DOI: 10.1016/j.bcp.2019.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is a process of transdifferentiation where endothelial cells gradually adopt the phenotypic characteristics of mesenchymal cells. This phenomenon was first discovered in embryonic heart development. The mechanisms underlying EndoMT are due to the activation of transforming growth factor-β, bone morphogenetic protein, Wingless/Integrated, or Notch signaling pathways. The EndoMT can be modulated by pathological processes, including inflammation, disturbed shear stress, vascular stiffness, and metabolic dysregulation. Recent studies have shown that EndoMT is implicated in the pathogenesis of chronic lung diseases, including pulmonary hypertension and lung fibrosis. Lung pathology of bronchopulmonary dysplasia can be mimicked in rodents exposed to hyperoxia as neonates. Although hyperoxic exposure reduces an endothelial cell marker platelet and endothelial cell adhesion molecule but increases a mesenchymal cell biomarker α-smooth muscle actin in vitro in human pulmonary endothelial cells, there is no direct evidence showing EndoMT in the development of bronchopulmonary dysplasia. Both pulmonary hypertension and lung fibrosis occur in long-term survivors with bronchopulmonary dysplasia. In this review, we discuss the EndoMT and its modulation by pathological processes. We then focus on the role of EndoMT in the pathogenesis of these chronic lung diseases, and discuss therapeutic approaches targeting the EndoMT using its negative regulators.
Collapse
Affiliation(s)
- Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Respiratory and Critical Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States.
| |
Collapse
|
14
|
Tan H, Yao H, Lie Z, Chen G, Lin S, Zhang Y. MicroRNA‑30a‑5p promotes proliferation and inhibits apoptosis of human pulmonary artery endothelial cells under hypoxia by targeting YKL‑40. Mol Med Rep 2019; 20:236-244. [PMID: 31115541 PMCID: PMC6579982 DOI: 10.3892/mmr.2019.10251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal and currently incurable cardiopulmonary disease. Numerous microRNAs (miRNAs) serve important roles in the development of PAH. While the expression of miR-30a-5p was downregulated in the lung tissue of rats in a pulmonary hypertension rat model, the expression pattern and function of miR-30a-5p in human PAH remain unclear. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to examine miR-30a-5p and chitinase-3-like protein 1 (YKL-40) mRNA expression levels. The expression levels of YKL-40 and apoptosis-associated proteins were measured by western blot analysis. Cell proliferation assays and flow cytometry analysis were performed to examine cell proliferation and apoptosis, respectively. The association between miR-30a-5p and YKL-40 was determined by a luciferase reporter assay, RT-qPCR and western blot analysis. The relative expression levels of miR-30a-5p in plasma were increased in patients with PAH [median=13.23 (25th percentile=6.388, 75th percentile=21.91)] compared with normal controls [median=2.25 (25th percentile=1.4, 75th percentile=3.7). The expression of miR-30a-5p was significantly downregulated while the protein expression of YKL-40 was significantly upregulated in hypoxia-induced human pulmonary artery endothelial cells (HPAECs) when compared with the hypoxia-induced group at 0 h. miR-30a-5p overexpression promoted HPAEC growth and inhibited apoptosis of HPAECs under hypoxia. A miR-30a-5p mimic decreased the luciferase activity of a luciferase reporter construct containing YKL-40 3′-untranslated region and also decreased YKL-40 protein expression. YKL-40 overexpression partly alleviated the effects of miR-30a-5p upregulation on proliferation and apoptosis of HPAECs under hypoxia. In conclusion, the data indicated that miR-30a-5p promoted cell growth and inhibited apoptosis of HPAECs under hypoxia by targeting YKL-40. Therefore, the miR-30a-5p/YKL-40 axis may provide a potential target for the development of novel PAH therapies.
Collapse
Affiliation(s)
- Hong Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Hua Yao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Zhenbang Lie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Guo Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Shuguang Lin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Ying Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| |
Collapse
|
15
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Herrmann FC, Sivakumar N, Jose J, Costi MP, Pozzi C, Schmidt TJ. In Silico Identification and In Vitro Evaluation of Natural Inhibitors of Leishmania major Pteridine Reductase I. Molecules 2017; 22:molecules22122166. [PMID: 29211037 PMCID: PMC6149668 DOI: 10.3390/molecules22122166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuation of our computational efforts to find new natural inhibitors of a variety of target enzymes from parasites causing neglected tropical diseases (NTDs), we now report on 15 natural products (NPs) that we have identified as inhibitors of Leishmania major pteridine reductase I (LmPTR1) through a combination of in silico and in vitro investigations. Pteridine reductase (PTR1) is an enzyme of the trypanosomatid parasites’ peculiar folate metabolism, and has previously been validated as a drug target. Initially, pharmacophore queries were created based on four 3D structures of LmPTR1 using co-crystallized known inhibitors as templates. Each of the pharmacophore queries was used to virtually screen a database of 1100 commercially available natural products. The resulting hits were submitted to molecular docking analyses in the substrate binding site of the respective protein structures used for the pharmacophore design. This approach led to the in silico identification of a total of 18 NPs with predicted binding affinity to LmPTR1. These compounds were subsequently tested in vitro for inhibitory activity towards recombinant LmPTR1 in a spectrophotometric inhibition assay. Fifteen out of the 18 tested compounds (hit rate = 83%) showed significant inhibitory activity against LmPTR1 when tested at a concentration of 50 µM. The IC50 values were determined for the six NPs that inhibited the target enzyme by more than 50% at 50 µM, with sophoraflavanone G being the most active compound tested (IC50 = 19.2 µM). The NPs identified and evaluated in the present study may represent promising lead structures for the further rational drug design of more potent inhibitors against LmPTR1.
Collapse
Affiliation(s)
- Fabian C Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| | - Nirina Sivakumar
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Correnstrasse 48, D-48149 Muenster, Germany.
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| |
Collapse
|