1
|
Huang L, Li H, Han Y. Exploring the mechanism of Epimedium in treating diabetic nephropathy based on network pharmacology and experimental validation study. Cytotechnology 2025; 77:82. [PMID: 40151768 PMCID: PMC11937453 DOI: 10.1007/s10616-025-00748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as Epimedium, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of Epimedium in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of Epimedium were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of Epimedium through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with AKT1, TNF, HSP90AA1, and SRC serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between Epimedium components and hub targets. Experimental validation showed that Epimedium restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. Epimedium exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00748-0.
Collapse
Affiliation(s)
- Leyu Huang
- Department of Pharmacy, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong China
- Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong China
| | - Hui Li
- Department of Pharmacy, Huazhong University of Science and Technology Union Shenzhen Hospital (Former Nanshan District People’s Hospital), Shenzhen, Guangdong China
| | - Ying Han
- Department of Pharmacy, Huazhou Hospital of Traditional Chinese Medicine, Maoming, Guangdong China
| |
Collapse
|
2
|
Duan Y, Zhao LJ, Lu YT, Li J, Li SX. Crosstalk between kidney and bones: New perspective for modulating osteoporosis. Ageing Res Rev 2025; 109:102776. [PMID: 40389172 DOI: 10.1016/j.arr.2025.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Growing evidence indicates an interesting interplay between kidney and bone. The pathophysiological condition of the skeletal system is intricately associated with the normal functioning of the kidneys. This relationship is modulated by various factors, including calcium and phosphate, 1-α-hydroxylase, erythropoietin (EPO), klotho, fibroblast growth factor 23 (FGF23), bone morphogenetic protein-7 (BMP-7), and extracellular vesicles (EVs). These interactions are notably evident in conditions such as chronic kidney disease with bone mineral density (CKD-BMD), renal osteodystrophy (ROD), and osteoporosis (OP). Furthermore, innovative methodologies such as cell co-culture, organ-on-a-chip, single-cell sequencing, and spatial transcriptomics are highlighted as instrumental in advancing the study of inter-organ interactions. This review, grounded in the pathogenesis, diagnostic and therapeutic modalities, and pharmacological treatments of OP, synthesizes evidence from molecular biology to clinical perspectives. It aims to establish a foundation for the development of more complex and physiologically relevant in vitro models and to propose potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China
| | - Li-Juan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China; College of Biology and Food Engineering, Huai Hua University, Huaihua 418000, PR China
| | - Yu-Ting Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China; Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, PR China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China.
| | - Shun-Xiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China.
| |
Collapse
|
3
|
Shao N, Ding Z, Liu F, Zhang X, Wang X, Hu S, Ye S, Wang T, Si W, Cai B. Huang-Pu-Tong-Qiao Formula Alleviates Hippocampal Neuron Damage by Inhibiting NLRP3 Inflammasome-mediated Pyroptosis in Alzheimer's Disease. Mol Neurobiol 2025; 62:4545-4561. [PMID: 39466576 DOI: 10.1007/s12035-024-04547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Huang-Pu-Tong-Qiao (HPTQ), a Traditional Chinese Medicine formula, has achieved remarkable efficacy in clinically treating Alzheimer's disease (AD). Pyroptosis refers to the inflammatory necrosis of cells, which contributes to AD pathological progression. However, it is unclear whether the therapeutic effect of HPTQ on AD is related to reducing pyroptosis. In this study, the network pharmacology analysis was used to predict the molecular mechanism of HPTQ in treating AD and validated our hypothesis through mice and cell experiments. APP/PS1 transgenic mice and Aβ25-35-injured HT22 cells were used as AD models in vivo and in vitro. The pharmacological effects and mechanisms of HPTQ on AD were evaluated by Morris water maze, Y-maze, transmission electron microscope, immunofluorescence, Hoechst/PI staining, western blot, and ELISA. Network pharmacology reveals the correlation between the therapeutic effect of HPTQ on AD and the NOD-like receptor signaling pathway. In APP/PS1 mice, HPTQ reduced the escape latency and maintained cell membrane integrity. In HT22 cells, 15% HPTQ-medicated serum and 10 µM MCC950 increased cell viability and decreased PI positive rate compared with the Model group. In addition, HPTQ treatment in AD animal and cell models reduced the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, GSDMD-N, IL-1β, and IL-18. The experimental results of MCC950 specifically inhibiting the NLRP3 expression suggested that HPTQ might reduce neuronal pyroptosis by reducing NLRP3 inflammasome. Network pharmacology and experimental validation suggested that HPTQ alleviated NLRP3 inflammasome-mediated neuronal pyroptosis in AD, which could provide valuable candidate drugs for AD clinical treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhixian Ding
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaojuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shenglin Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Shu Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Tingting Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
4
|
Jin Z, Li Y, Yi H, Wang M, Wang C, Du S, Zeng W, Zong Z. Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review). Int J Oncol 2025; 66:22. [PMID: 39950314 PMCID: PMC11844340 DOI: 10.3892/ijo.2025.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy and a significant proportion of patients with CRC develop liver metastasis (CRLM), which is a major contributor to CRC‑related mortality. The present review aimed to comprehensively examine the pathogenetic development and diagnosis of CRLM and the clinical therapeutic approaches for treatment of this disease. The molecular mechanisms underlying CRLM were discussed, including the role of the tumour microenvironment and epithelial‑mesenchymal transition. The present review also highlighted the importance of early detection and the current challenges in predicting the development of CRLM. Various treatment strategies were reviewed, including surgical resection, chemotherapy and immunotherapy, and the potential of novel therapies, such as selective internal radiation therapy and Traditional Chinese Medicine. Despite recent advancements in treatment options, the treatment of CRLM remains a therapeutic challenge due to the complexity of the liver microenvironment and the heterogeneity of CRC. The present review emphasized the need for a multidisciplinary approach and the integration of emerging therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chaofeng Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaokun Du
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Rapuru R, Begum RF, Singh SA, Vellapandian C, Ali N, AlAsmari AF, Prajapati BG. Exploring the therapeutic potential of leriodenine and nuciferine from Nelumbo nucifera for renal fibrosis: an In-silico analysis. Z NATURFORSCH C 2025:znc-2024-0229. [PMID: 39925105 DOI: 10.1515/znc-2024-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025]
Abstract
A major problem in chronic kidney illnesses is renal fibrosis. This research investigates the therapeutic potential of compounds derived from Nelumbo nucifera (Lotus). Comprehensive screening identified these compounds, which exhibit promising binding affinities with key targets associated with renal fibrosis. Leriodenine and Nuciferine demonstrate substantial potential by modulating critical targets such as PTGS2, JUN, EGFR, STAT3, mTOR, and AKT1. The identified biomolecule-target-pathway network highlights the intricate interactions underlying the therapeutic effects of lotus seed compounds in renal fibrosis. Strong binding affinities with PTGS2-PDBID:5F19, Leriodenine -8.99 kcal/mol and Nuciferine -9.33 kcal/mol, and JUN-PDBID:1S9K, Leriodenine -7.95 kcal/mol and Nuciferine -7.05 kcal/mol are shown by molecular docking investigations, indicating their potential as fibrotic process inhibitors. During 10 ns of molecular docking simulations, these compounds demonstrated robust hydrogen-bonding connections within the protein's active site, leading to a possible alteration in the conformation of the ligand-binding site. The research establishes the foundation for future experimental validation, clinical trials, to bridge the translational gap. The research combines target prediction, protein-protein interaction studies, and biomolecular screening to clarify the molecular pathways behind renal fibrosis. We also carried out Insilico molecular docking and carried out molecular dynamics simulation of the best compound identified to obtain more precise results.
Collapse
Affiliation(s)
- Rushendran Rapuru
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - S Ankul Singh
- Department of Pharmacology, Faculty of Pharmacy, Dr. M.G.R Educational and Research Institute, Velappanchavadi, Chennai 600 077, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Mahesana, 384012, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Sanam Chandra Palace Campus,6 Rajamankha Nai Road, Amphoe Muang, Nakhon Pathom Province 73000, Thailand
| |
Collapse
|
6
|
Rushendran R, Singh S A, Begum RF, Chitra V, Ali N, Prajapati BG. Bioinformatics Exploration of the Therapeutic Potential of Lotus Seed Compounds in Multiple Sclerosis: A Network Analysis of c-Jun Pathway. Drug Dev Res 2025; 86:e70038. [PMID: 39756059 DOI: 10.1002/ddr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS. Utilizing Nelumbo Nucifera (Lotus) seeds, the study involves toxicity assessments, biomolecule screening, and target prediction. Advanced computational methodologies are employed, including molecular docking and dynamic simulations, to assess potential therapeutic interactions. Biomolecule screening identifies eight active compounds from Lotus seeds, including Anonaine and Liriodenine. Target prediction reveals 264 common targets with MS-related genes. Protein-protein interaction analysis establishes a complex network, identifying central targets like SRC and AKT1. Bioinformatics enrichment analysis uncovers potential therapeutic candidates and pathways. A Biomolecule-Target-Pathway network diagram visualizes interactions, with Anonaine and Liriodenine exhibiting strong binding affinities in molecular docking studies. Molecular dynamics simulations provide insights into dynamic interactions. In conclusion, through advanced computational techniques, it unveils molecular interactions, potential therapies, and pathways, bridging predictions with practical applications. Anonaine and Liriodenine show promise in curbing MS biomarkers.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Ankul Singh S
- Department of Pharmacology, Dr. M.G.R Educational and Research Institute, Faculty of Pharmacy, Chennai, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Sanam Chandra Palace Campus, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
7
|
Hu S, Li S, Xu Y, Huang X, Mai Z, Chen Y, Xiao H, Ning W, Gaus S, Savkovic V, Lethaus B, Zimmerer R, Acharya A, Ziebolz D, Schmalz G, Huang S, Zhao J, Hu X. The antitumor effects of herbal medicine Triphala on oral cancer by inactivating PI3K/Akt signaling pathway: based on the network pharmacology, molecular docking, in vitro and in vivo experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155488. [PMID: 38493718 DOI: 10.1016/j.phymed.2024.155488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND This research aimed to investigate the anti-tumor effects and underlying genetic mechanisms of herbal medicine Triphala (TRP) in oral squamous cell carcinoma (OSCC). METHODS The target genes of Triphala (TRP) in oral squamous cell carcinoma (OSCC) were identified, and subsequent functional enrichment analysis was conducted to determine the enriched signaling pathways. Based on these genes, a protein-protein interaction network was constructed to identify the top 10 genes with the highest degree. Genes deregulated in OSCC tumor samples were identified to be hub genes among the top 10 genes. In vitro experiments were performed to investigate the influence of TRP extracts on the cell metabolic activity, migration, invasion, apoptosis, and proliferation of two OSCC cell lines (CAL-27 and SCC-9). The functional rescue assay was conducted to investigate the effect of applying the inhibitor and activator of an enriched pathway on the phenotypes of cancer cells. In addition, the zebrafish xenograft tumor model was established to investigate the influence of TRP extracts on tumor growth and metastasis in vivo. RESULTS The target genes of TRP in OSCC were prominently enriched in the PI3K-Akt signaling pathway, with the identification of five hub genes (JUN, EGFR, ESR1, RELA, and AKT1). TRP extracts significantly inhibited cell metabolic activity, migration, invasion, and proliferation and promoted cell apoptosis in OSCC cells. Notably, the application of TRP extracts exhibited the capacity to downregulate mRNA and phosphorylated protein levels of AKT1 and ESR1, while concomitantly inducing upregulation of mRNA and phosphorylated protein levels in the remaining three hub genes (EGFR, JUN, and RELA). The functional rescue assay demonstrated that the co-administration of TRP and the PI3K activator 740Y-P effectively reversed the impact of TRP on the phenotypes of OSCC cells. Conversely, the combination of TRP and the PI3K inhibitor LY294002 further enhanced the effect of TRP on the phenotypes of OSCC cells. Remarkably, treatment with TRP in zebrafish xenograft models demonstrated a significant reduction in both tumor growth and metastatic spread. CONCLUSIONS Triphala exerted significant inhibitory effects on cell metabolic activity, migration, invasion, and proliferation in OSCC cell lines, accompanied by the induction of apoptosis, which was mediated through the inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shaonan Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xiuhong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhaoyi Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hui Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Wanchen Ning
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College & Hospital, Pune 411018, India
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig 04103, Germany
| | - Shaohong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen 518118, China.
| | - Xianda Hu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing 100029, China; Institute for the History of Chinese Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Chen H, Zhang G, Peng Y, Wu Y, Han X, Xie L, Xu H, Chen G, Liu B, Xu T, Pang M, Hu C, Fan H, Bi Y, Hua Y, Zhou Y, Luo S. Danggui Shaoyao San protects cyclophosphamide-induced premature ovarian failure by inhibiting apoptosis and oxidative stress through the regulation of the SIRT1/p53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117718. [PMID: 38181933 DOI: 10.1016/j.jep.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.
Collapse
Affiliation(s)
- Hongmei Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Guanghong Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine/Post- Doctoral Research Station, Guangzhou, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, 529599, China
| | - Yiming Bi
- Department of Acupuncture and Moxibustion, The Affliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Songping Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
9
|
Wang J, Zhang Z, Li Q, Hu Z, Chen Y, Chen H, Cai W, Du Q, Zhang P, Xiong D, Ye S. Network pharmacology and molecular docking reveal the mechanisms of curcumin activity against esophageal squamous cell carcinoma. Front Pharmacol 2024; 15:1282361. [PMID: 38633613 PMCID: PMC11021710 DOI: 10.3389/fphar.2024.1282361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Curcumin (CUR), an effective traditional Chinese medicinal extract, displays good anti-cancer activity against various cancers. Nevertheless, the impacts and fundamental mechanisms of CUR to treat esophageal squamous cell carcinoma (ESCC) yet to be comprehensively clarified. This study examined the suppressive impacts of CUR on ESCC. Methods: For a comprehensive understanding of the effect of CUR in ESCC. The CUR targets and ESCC-related genes were identified respectively, and the intersection targets between CUR and ESCC were acquired. Then, we examined the intersection targets and discovered genes that were expressed differently in ESCC. Using DAVID, enrichment analyses were conducted on the targets of CUR-ESCC. The STRING database and Cytoscape v.3.9.1 were utilized to build networks for protein-protein interaction (PPI) and drug-target-pathway. Furthermore, the interactions between CUR and its core targets were confirmed by molecular docking studies. To confirm the effects of CUR on ESCC cells, in vitro experiments were finally conducted. Results: Overall, 47 potential CUR targets for ESCC treatment were identified. The KEGG pathway enrichment analysis identified 61 signaling pathways, primarily associated with the FoxO signaling, the cell cycle, cellular senescence, the IL-17 signaling pathway which play important roles in ESCC progression. In the PPI network and the docking results identified CHEK1 and CDK6 as the core targets that positively associated with ESCC survival. CUR arrested ESCC cells at the G2/M and S phases, as shown by flow cytometry. Colony formation and CCK8 assays showed that CUR can inhibit the proliferative ability of ESCC cells. The Transwell invasion results validated that CUR can significantly inhibit the invasion rates of ESCC cells. Conclusion: Collectively, these findings indicate that CUR exhibits pharmacological effects on multiple targets and pathways in ESCC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Zhilong Zhang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qian Li
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Zilong Hu
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yuan Chen
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wei Cai
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qiancheng Du
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Shugao Ye
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
10
|
Xia Y, Yu Y, Zhao Y, Deng Z, Zhang L, Liang G. Insight into the Interaction Mechanism of Vitamin D against Metabolic Syndrome: A Meta-Analysis and In Silico Study. Foods 2023; 12:3973. [PMID: 37959091 PMCID: PMC10649035 DOI: 10.3390/foods12213973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As a dietary supplement or functional food additive, vitamin D (VD) deficiency may impact extra-skeletal functions associated with metabolic syndrome (MetS) risk factors. However, the precise effects and mechanisms of VD supplementation on dyslipidemia and insulin resistance in MetS subjects remain controversial. Here, we investigate potential therapeutic targets, pathways and mechanisms of VD against MetS through a comprehensive strategy including meta-analysis, network pharmacology analysis, molecular docking, dynamics simulations, and quantum chemical calculations. Our results reveal that VD supplementation significantly reduces triglyceride levels, fasting glucose, and insulin concentrations in subjects, thereby improving insulin homeostasis to some extent. We theoretically identify 14 core MetS-associated targets. Notably, VD exhibits substantial interactions with three targets (PPARγ, FABP4, and HMGCR) in the PPAR signaling pathway, indicating that VD can modulate this pathway. Van der Waals forces predominantly stabilize the complexes formed between VD and the three targets. Nonetheless, to provide valuable insights for personalized MetS management, further research is necessary to confirm our findings, emphasizing the importance of exploring genetic variability in VD response. In conclusion, our study contributes insights into the mechanisms of VD in preventing and treating MetS through dietary supplementation, promoting the development of VD-based functional foods or nutritious diets.
Collapse
Affiliation(s)
- Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| |
Collapse
|
11
|
Huang J, Zhang X, Wang J, Gu C, Zhang Y, Hu G, Chen J. Mechanism of Yushenhuoxue prescription in treating endometriosis based on network pharmacology and the effect on the TNF pathway. Heliyon 2023; 9:e20283. [PMID: 37780753 PMCID: PMC10539959 DOI: 10.1016/j.heliyon.2023.e20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Endometriosis is a common disease in the field of gynaecology, exhibiting clinical manifestations such as dysmenorrhoea, pelvic masses, and infertility, affecting 2-10% of women of reproductive age worldwide. Currently, the acceptance rate of hormonal drugs in patients is low and certain side effects exist. In this study, based on network pharmacology, it was found that the Yushenhuoxue (YSHX) formula could potentially affect endometriosis through the TNF signalling pathway. Clinical studies indicated that YSHX demonstrated the ability to reduce the vas score of dysmenorrhoea, resulting in a significant down-regulation of serum ca125 and inflammatory factors (IL-6, IL-1β, TNF-α). In vivo studies showed that stem cell mice in the YSHX group exhibited significantly reduced lesion volumes than those in the model group. Serum levels of IL-1β and IL-6 were significantly decreased. Moreover, the phosphorylation levels of NF-κB p65 and the expression of TNF-α protein were significantly decreased. In vitro studies have shown that YSHX inhibits the proliferation, invasion, and migration of endometriotic cells. This study partially verified that YSHX contributed to the treatment of endometriosis by regulating the TNF signalling pathway and improving the inflammatory state of endometriosis.
Collapse
Affiliation(s)
- Jiami Huang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Jiayun Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cancan Gu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Hu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Wan C, Ma Q, Anderson S, Zhang QH, Zhang CF, Wang AH, Bell E, Hou L, Yuan CS, Wang CZ. Effects of Curcuminoids and Surfactant-Formulated Curcumin on Chemo-Resistant Colorectal Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1577-1594. [PMID: 37465963 DOI: 10.1142/s0192415x23500714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death in the United States, and chronic gut inflammation is a risk factor for CRC initiation and development. Curcuma longa L., or turmeric, has become one of the most studied herbal medicines in recent years due to its anticancer potentials. It is generally accepted that the major component in turmeric is curcuminoids, and the active constituent in curcuminoids is curcumin. However, unprocessed curcumin is characterized by poor water solubility, which means low bioavailability in humans. To increase the bioavailability of curcumin, in this study, we utilized a novel surfactant-formulated curcumin (CuminUP60[Formula: see text]) and evaluated its CRC chemopreventive activities. Compared with the chemo-sensitive CRC cell line HCT-116, the management of the CRC SW-480 cell line is a challenge, since the latter is chemo-resistant. In other words, these cancer cells resist the effects of the chemotherapy. Using the newly formulated CuminUP60[Formula: see text] water solution, this study demonstrated its strong antiproliferative effects on the SW-480 cells in a dose- and time-dependent manner. This new formulation induced early apoptosis and arrested the cell cycle in the G2/M phase via the upregulation of cyclin B1. We also observed that this new formulation possessed inhibitory effects on Th17 cell differentiation, which regulates the body's immune response against gut malignancies. In summary, our results exhibited a potential clinical utility of the surfactant-formulated curcumin in chemo-resistant colorectal cancer management.
Collapse
Affiliation(s)
- Chunping Wan
- Central Laboratory, No. 1, Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, P. R. China
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qinge Ma
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Samantha Anderson
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Angela H Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Emma Bell
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Liu Y, Wang S, Jin G, Gao K, Wang S, Zhang X, Zhou K, Cai Y, Zhou X, Zhao Z. Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154915. [PMID: 37392674 DOI: 10.1016/j.phymed.2023.154915] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE To study the effect of ShenKang Injection (SKI) on the kidneys of DKD rats and its effect on oxidative stress mediated by the Keap1/Nrf2/Ho-1 signaling pathway through network pharmacology and in vivo and in vitro experiments. METHODS SKI drug targets were screened by TCMSP, DKD targets were screened by GenGards, OMIM, Drugbank, TTD, and Disgenet databases, and the two intersected for PPI network analysis and target prediction was performed by GO and KEGG. A total of 40 SD rats were randomly divided into 10 in the control group and 30 in the model group. After the model group was fed 8 W with high-sugar and high-fat diets, a DKD model was constructed by one-time intraperitoneal injection of streptozotocin (35 mg/kg). According to the weight, the model animals were randomly divided into three groups: 8 for model validation group, 8 for Irbesartan (25 mg/kg daily) group, and 8 for SKI group (5 ml/kg). Gavaged deionized water was given to the control group and the model validation group equally. The general conditions of the rats were observed, their body weights measured and their urine volumes recorded for 24 h. After the intervention of 16 W, serum was collected to detect Urea, Scr, blood lipids, and oxidative stress and lipid peroxidation indicators; Transmission electron microscopy, HE and Mallory staining were used to observe the pathological morphology of renal tissue. Immunohistochemistry and RT-PCR were used to detect the expression of Keap1, Nrf2, Ho-1, Gpx4 proteins and mRNA in rat kidney tissues. HK-2 cells were cultured in vitro and divided into: the control group, AGEs (200 μg/ml) group and AGEs + SKI group. The cell activity of the groups was detected using CCK-8 after 48 h of cell culture, and ROS were detected using fluorescent probes. Gpx4 expression was detected by immunofluorescence, while Keap1, Nrf2, Ho-1, and Gpx4 were detected by Western Blot. RESULTS Network pharmacological analysis predicted that SKI may delay DKD kidney injury by affecting redox-related signaling pathways and mitigating AGEs-induced oxidative stress. In the animal experiment, compared with the model validation group, the general state of rats in the SKI group was improved, and 24-hour urine protein levels were significantly reduced, and the Scr in the serum was reduced. A decreasing trend was seen in Urea, and TC, TG, and LDL levels significantly decreased and the levels of ROS, LPO and MDA were significantly lowered. Pathological staining showed that renal interstitial fibrosis was significantly improved, and electron microscopy showed that foot process effacement was alleviated. Immunohistochemistry and RT-PCR showed decreased expression of Keap1 protein and mRNA in kidney tissues of the SKI group. Additionally, Nrf2, Ho-1, and Gpx4 proteins and mRNA were expressed significantly. In the cell experiment, after 48 h treatment with AGEs, ROS in HK-2 cells increased significantly and cell activity decreased significantly, while cell activity in AGEs + SKI group increased significantly and ROS decreased. The expression of Keap1 protein in HK-2 cells in the AGEs + SKI group decreased, while the expression of Nrf2, Ho-1 and Gpx4 proteins increased significantly. CONCLUSION SKI can protect kidney function in DKD rats, delay DKD progression, inhibit AGEs-induced oxidative stress damage in HK-2 cells, and the mechanism of SKI to improve DKD may be achieved by activating the Keap1/Nrf2/Ho-1 signal transduction pathway.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Sitong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ge Jin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kun Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinjiang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaidong Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanmo Cai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zongjiang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
14
|
Chen X, Zheng M, Fei X, Ma X. Analysis of the efficacy of Dabuyin pill combined with gonadotropin-releasing hormone analogue in the treatment of central precocious puberty girls based on network pharmacology. Transl Pediatr 2023; 12:364-374. [PMID: 37035395 PMCID: PMC10080485 DOI: 10.21037/tp-23-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) believes that central precocious puberty (CPP) is affected by the imbalance of kidney Yin and Yang. Dabuyin pill is a recipe for nourishing Yin and lowering fire. The network pharmacology method was used to analyze the active components, action targets, and molecular pathways of Dabuyin pill in the treatment of CPP. METHODS The main chemical components of Dabuyin pill were obtained from the Integrative database of Traditional Chinese Medicine enhanced by Symptom Mapping (SymMap) database and Traditional Chinese Medicine Systems Pharmacology (TCMSP), and compound targets were retrieved from SymMap and the Encyclopedia of Traditional Chinese Medicine (ETCM). Disease targets were retrieved from the DisGeNET and Gene Expression Omnibus (GEO) databases, and the intersection of compound targets and disease targets was performed to obtain the prediction targets of Dabuyin pill acting on CPP. The key targets enriched by Database for Annotation, Visualization, and Integrated Discovery (DAVID) were then used for Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS GO analysis showed that the biological functions of Dabuyin pill in the treatment of key targets of CPP mainly involved apoptosis, nitric oxide synthesis, estradiol response, angiogenesis, inflammation, and so on. KEGG pathway analysis was mainly enriched in the tumor necrosis factor (TNF) signaling pathway, phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxia-inducible factor-1 (HIF-1) signaling pathway, and apoptosis. Among them, the regulation effect of Dabuyin pill prescription on apoptosis may both act on TP53 and different signaling pathways of apoptosis, thus playing a synergistic role. CONCLUSIONS Dabuyin pill combined with GnRHa for the prevention and treatment of CPP in girls can effectively intervene CPP, and the effect of Dabuyin pill on sex hormones is one of its protective mechanisms against CPP.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Pediatrics, Central Hospital of Haining, Haining, China
| | - Min Zheng
- Day Surgery Center, Children’s Hospital of Wuhan, Wuhan, China
| | - Xiaoling Fei
- Department of Pediatrics, Central Hospital of Haining, Haining, China
| | - Xiaohui Ma
- Department of Pediatrics, Central Hospital of Haining, Haining, China
| |
Collapse
|
15
|
Cui X, Liu X, Wang F, Lou K, Hong J, Bai H, Chen R, Yang Y, Liu Q. Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology. BMC Complement Med Ther 2023; 23:36. [PMID: 36739385 PMCID: PMC9898901 DOI: 10.1186/s12906-023-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.
Collapse
Affiliation(s)
- Xuran Cui
- grid.24696.3f0000 0004 0369 153XBeijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China ,Beijing Institute of Chinese Medicine, Beijing, China ,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China
| | - Xibao Liu
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Feng Wang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Kun Lou
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Junping Hong
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Hequn Bai
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Rongchu Chen
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Yang Yang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Institute of Chinese Medicine, Beijing, China. .,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China.
| |
Collapse
|
16
|
Ruan J, Li H, Lu M, Hao M, Sun F, Yu H, Zhang Y, Wang T. Bioactive triterpenes of jujube in the prevention of colorectal cancer and their molecular mechanism research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154639. [PMID: 36608502 DOI: 10.1016/j.phymed.2022.154639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Jujube, a popular fruit from the Rhamnaceae family, relieves colorectal inflammation caused by spleen deficiency and has been used in many formulas in clinical for decades to treat colorectal cancer (CRC). As of yet, the therapeutic substances and mechanism of their action are unknown. PURPOSE The purpose of this study is to define the therapeutic substances of jujube and its mechanism of action in treating CRC. METHODS The pharmacological effects of jujube extract and its fractions were evaluated in vivo using a CRC mouse model induced by AOM/DSS. The DAI value, colon length, mortality, tumor burden, and histological tumor size of the treated animals were compared. To explore the potential therapeutic substances, LC-MS analysis was conducted to characterize the serum migration components. A network pharmacology experiment was carried out for potential molecular targets. To verify the therapeutic substances as well as the molecular mechanism of jujube intervening CRC, cellular MTT assay of the serum migration components, Western blot and IHC tests were conducted. RESULTS The in vivo pharmacological studies showed that compared to AOM/DSS treated mice, the mortality and DAI value, tumor burden, and histological tumor size of jujube extract and its fat-soluble fraction (mainly contained triterpenes) treated mice were significantly reduced, and their colon lengths were obviously longer than AOM/DSS treated mice. The targeted-LC/MS analysis supposed triterpenes 3, 7, 9, 11, 12, 14, 17 - 21, and 25 - 28 to be the serum migration components, which might be the potential therapeutic substances. In the network pharmacology experiment, the GO annotation and enrichment analysis of the KEGG pathway indicated that PI3K-Akt pathway and inflammatory reaction were important factors for jujube inhibiting CRC. Cellular MTT assay of serum migration components indicated that the potential effective substances from fat-soluble fraction to be triterpenes 3, 7, 17, 19, 20, and 25. The Western blot and IHC assays implied that the jujube extract, its fat-soluble fraction, and triterpenes 7, 17, and 20 showed inhibition on the expression of PI3K/Akt/NF-κB signaling pathway-related proteins. Additionally, it was noted in the pharmacodynamic experiment that ZJL's effectiveness was more apparent than ZJH and SQL in tumor burden rate, colon length, and spleen weight, which indicated that the efficacy of ZJ is contributed from CD and SQ, and they may have a synergistic effect on anti-CRC. CONCLUSION These results for the first time provide evidence that jujube triterpenes possess an anti-CRC effect, their mechanism was involving the control of the PI3K/Akt/NF-κB signaling pathway. What's more, the potential synergistic effect of the fat-soluble and water-soluble components found in this study provided a solid foundation for our deep understanding of how jujube can ameliorate CRC.
Collapse
Affiliation(s)
- Jingya Ruan
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Huimin Li
- Institute of TCM, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Mengqi Lu
- Institute of TCM, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Mimi Hao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Fan Sun
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Haiyang Yu
- Institute of TCM, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; Institute of TCM, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Tao Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; Institute of TCM, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
17
|
Kim H, Jo HG, Hwang JH, Lee D. Integrative medicine (East Asian herbal medicine combined with conventional medicine) for psoriasis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e32360. [PMID: 36701719 PMCID: PMC9857380 DOI: 10.1097/md.0000000000032360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory, autoimmune skin disease. The aim of this review is to systematically evaluate the efficacy and safety of integrative medicine (East Asian herbal medicine combined with conventional medicine) used to treat inflammatory skin lesions of psoriasis. METHODS A comprehensive literature search will be conducted in 3 English databases (PubMed, Cochrane Library, and Embase), 4 Korean databases (Korean Studies Information Service System, Research Information Service System, Oriental Medicine Advanced Searching Integrated System, and Korea Citation Index), 2 Chinese databases (Chinese National Knowledge Infrastructure Database and Wanfang data), and 1 Japanese database (Citation Information by National Institute of Informatics) for randomized controlled trials from their inception until July 29, 2021. Statistical analysis will be performed using R version 4.1.2 and the R studio program using the default settings of the "meta" and "metafor" packages. The primary outcome will be an improvement in the psoriasis area severity index. All outcomes will be analyzed using a random-effects model to produce more statistically conservative results. If heterogeneity is detected in the study, the cause will be identified through sensitivity, meta-regression, and subgroup analyses. Methodological quality will be assessed independently using the revised tool for the risk of bias in randomized trials, version 2.0. The overall quality of evidence will be evaluated according to the Grading of Recommendations Assessment, Development, and Evaluation pro framework. RESULTS This study will review all available trials on the same subject and arrive at a more statistically robust conclusion based on a sufficient sample size of participants and additional analysis using data mining techniques will be performed on intervention prescription information in clinical studies collected according to rigorous criteria. CONCLUSION We believe that this study will provide useful knowledge on managing inflammatory skin lesions of psoriasis vulgaris using integrative medicine using East Asian herbal medicine.
Collapse
Affiliation(s)
- Hyehwa Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Sujeong-gu, Seongnam, Republic of Korea
| | - Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Sujeong-gu, Seongnam, Republic of Korea
- Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, Republic of Korea
- * Corresponding author: Hee-Geun Jo, Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Sujeong-gu, Seongnam, Republic of Korea (e-mail: )
| | - Ji-Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Sujeong-gu, Seongnam, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Sujeong-gu, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Rao Y, Wang Y, Lin Z, Zhang X, Ding X, Yang Y, Liu Z, Zhang B. Comparative efficacy and pharmacological mechanism of Chinese patent medicines against anthracycline-induced cardiotoxicity: An integrated study of network meta-analysis and network pharmacology approach. Front Cardiovasc Med 2023; 10:1126110. [PMID: 37168657 PMCID: PMC10164985 DOI: 10.3389/fcvm.2023.1126110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background This study aimed to evaluate the efficacy of Chinese patent medicines (CPMs) combined with dexrazoxane (DEX) against anthracycline-induced cardiotoxicity (AIC) and further explore their pharmacological mechanism by integrating the network meta-analysis (NMA) and network pharmacology approach. Methods We searched for clinical trials on the efficacy of DEX + CPMs for AIC until March 10, 2023 (Database: PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure, China Science and Technology Journal and China Online Journals). The evaluating outcomes were cardiac troponin I (cTnI) level, creatine kinase MB (CK-MB) level, left ventricular ejection fraction (LVEF) value, and electrocardiogram (ECG) abnormal rate. Subsequently, the results of NMA were further analyzed in combination with network pharmacology. Results We included 14 randomized controlled trials (RCTs) and 1 retrospective cohort study (n = 1,214), containing six CPMs: Wenxinkeli (WXKL), Cinobufotalin injection (CI), Shenqifuzheng injection (SQFZ), Shenmai injection (SM), Astragalus injection (AI) and AI + CI. The NMA was implemented in Stata (16.0) using the mvmeta package. Compared with using DEX only, DEX + SM displayed the best effective for lowering cTnI level (MD = -0.44, 95%CI [-0.56, -0.33], SUCRA 93.4%) and improving LVEF value (MD = 14.64, 95%CI [9.36, 19.91], SUCRA 98.4%). DEX + SQFZ showed the most effectiveness for lowering CK-MB level (MD = -11.57, 95%CI [-15.79, -7.35], SUCRA 97.3%). And DEX + AI + CI has the highest effectiveness for alleviating ECG abnormalities (MD = -2.51, 95%CI [-4.06, -0.96], SUCRA 96.8%). So that we recommended SM + DEX, SQFZ + DEX, and DEX + AI + CI as the top three effective interventions against AIC. Then, we explored their pharmacological mechanism respectively. The CPMs' active components and AIC-related targets were screened to construct the component-target network. The potential pathways related to CPMs against AIC were determined by KEGG. For SM, we identified 118 co-targeted genes of active components and AIC, which were significantly enriched in pathways of cancer pathways, EGFR tyrosine kinase inhibitor resistance and AGE-RAGE signaling pathway in diabetic complications. For SQFZ, 41 co-targeted genes involving pathways of microRNAs in cancer, Rap1 signaling pathway, MAPK signaling pathway, and lipid and atherosclerosis. As for AI + CI, 224 co-targeted genes were obtained, and KEGG analysis showed that the calcium signaling pathway plays an important role except for the consistent pathways of SM and SQFZ in anti-AIC. Conclusions DEX + CPMs might be positive efficacious interventions from which patients with AIC will derive benefits. DEX + SM, DEX + SQFZ, and DEX + AI + CI might be the preferred intervention for improving LVEF value, CK-MB level, and ECG abnormalities, respectively. And these CPMs play different advantages in alleviating AIC by targeting multiple biological processes.
Collapse
Affiliation(s)
- Yifei Rao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Bing Zhang
| |
Collapse
|
19
|
Wu J, Cui N, Li Z, Wu Y, Hao T, Li L. Clinical characteristics and survival outcomes in patients aged 75 years or older with advanced colorectal cancer treated using traditional Chinese medicine: an observational retrospective study. Front Pharmacol 2023; 14:1099659. [PMID: 37153772 PMCID: PMC10157214 DOI: 10.3389/fphar.2023.1099659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Limited evidence suggests that elderly patients with advanced colorectal cancer (ACRC) may benefit from traditional Chinese medicine (TCM). This study investigated the efficacy and safety of TCM in old ACRC patients treated in the Oncology Department of Xiyuan Hospital between January 2012 and December 2021. The clinical characteristics of these patients were retrospectively reviewed. Their progression-free survival (PFS) and total duration of TCM therapy (TTCM) were analyzed using the Kaplan-Meier curve. Forty-eight patients (F:M 13:35) with a mean age of 78.75 ± 2.99 years (range, 75-87) met the inclusion criteria. There were 18 cases of rectal cancer and 30 of colon cancer. The median PFS was 4 months (range, 1-26; 95% CI 3.26-4.73). The median TTCM was 5.5 months (range, 1-50; 95% CI 1.76-8.24). Subgroup analysis revealed that PFS and TTCM were shorter in patients with bone metastases and an ECOG performance status score of 2-3 (p < 0.05). No hematological toxicity or serious adverse reactions occurred during the study period. This real-world study demonstrates that TCM may be a potentially beneficial therapy for old ACRC patients, including when the ECOG performance status score is 2-3.
Collapse
Affiliation(s)
| | | | | | - Yu Wu
- *Correspondence: Yu Wu, , Tengteng Hao,
| | | | | |
Collapse
|
20
|
Zhang C, Chen G, Tang G, Xu X, Feng Z, Lu Y, Chan YT, Wu J, Chen Y, Xu L, Ren Q, Yuan H, Yang DH, Chen ZS, Wang N, Feng Y. Multi-component Chinese medicine formulas for drug discovery: State of the art and future perspectives. ACTA MATERIA MEDICA 2023; 2. [DOI: 10.15212/amm-2022-0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
For hundreds of years, the drug discovery and development industry has aimed at identifying single components with a clear mechanism of action as desirable candidates for potential drugs. However, this conventional strategy of drug discovery and development has faced challenges including a low success rate and high development costs. Herein, we critically review state-of-the-art drug discovery and development based on multi-component Chinese medicine formulas. We review the policies and application status of new drugs based on multi-component Chinese medicines in the US, China, and the European Union. Moreover, we illustrate several excellent cases of ongoing applications. Biomedical technologies that may facilitate drug discovery and development based on multi-component Chinese medicine formulas are discussed, including network pharmacology, integrative omics, CRISPR gene editing, and chemometrics. Finally, we discuss potential problems and solutions in pre-clinical and clinical research in drug discovery and development based on multi-component Chinese medicine formulas. We hope that this review will promote discussion of the roles of multi-component Chinese medicine formulas in the discovery and development of new drugs for the treatment of human diseases.
Collapse
|