1
|
Bedair NM, Sakr MA, Mourad A, Eissa N, Mostafa A, Khamiss O. Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. Arch Virol 2024; 169:99. [PMID: 38625394 PMCID: PMC11021324 DOI: 10.1007/s00705-024-06018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.
Collapse
Affiliation(s)
- Nahed M Bedair
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Moustafa A Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt.
| | - Ahmed Mourad
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Nourhan Eissa
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Omaima Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| |
Collapse
|
2
|
Ding X, Qin L, Meng J, Peng Y, Wu A, Jiang T. Progress and Challenge in Computational Identification of Influenza Virus Reassortment. Virol Sin 2021; 36:1273-1283. [PMID: 34037948 DOI: 10.1007/s12250-021-00392-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Genomic reassortment is an important evolutionary mechanism for influenza viruses. In this process, the novel viruses acquire new characteristics by the exchange of the intact gene segments among multiple influenza virus genomes, which may cause flu endemics and epidemics within or even across hosts. Due to the safety and ethical limitations of the experimental studies on influenza virus reassortment, numerous computational researches on the influenza virus reassortment have been done with the explosion of the influenza virus genomic data. A great amount of computational methods and bioinformatics databases were developed to facilitate the identification of influenza virus reassortments. In this review, we summarized the progress and challenge of the bioinformatics research on influenza virus reassortment, which can guide the researchers to investigate the influenza virus reassortment events reasonably and provide valuable insight to develop the related computational identification tools.
Collapse
Affiliation(s)
- Xiao Ding
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Luyao Qin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Jing Meng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Yousong Peng
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China. .,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Pinsent A, Fraser C, Ferguson NM, Riley S. A systematic review of reported reassortant viral lineages of influenza A. BMC Infect Dis 2016; 16:3. [PMID: 26732146 PMCID: PMC4702296 DOI: 10.1186/s12879-015-1298-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Most previous evolutionary studies of influenza A have focussed on genetic drift, or reassortment of specific gene segments, hosts or subtypes. We conducted a systematic literature review to identify reported claimed reassortant influenza A lineages with genomic data available in GenBank, to obtain 646 unique first-report isolates out of a possible 20,781 open-access genomes. Results After adjusting for correlations, only: swine as host, China, Europe, Japan and years between 1997 and 2002; remained as significant risk factors for the reporting of reassortant viral lineages. For swine H1, more reassortants were observed in the North American H1 clade compared with the Eurasian avian-like H1N1 clade. Conversely, for avian H5 isolates, a higher number of reported reassortants were observed in the European H5N2/H3N2 clade compared with the H5N2 North American clade. Conclusions Despite unavoidable biases (publication, database choice and upload propensity) these results synthesize a large majority of the current literature on novel reported influenza A reassortants and are a potentially useful prerequisite to inform further algorithmic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1298-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Pinsent
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Neil M Ferguson
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Steven Riley
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
4
|
Indications that live poultry markets are a major source of human H5N1 influenza virus infection in China. J Virol 2011; 85:13432-8. [PMID: 21976646 DOI: 10.1128/jvi.05266-11] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human infections of H5N1 highly pathogenic avian influenza virus have continued to occur in China without corresponding outbreaks in poultry, and there is little conclusive evidence of the source of these infections. Seeking to identify the source of the human infections, we sequenced 31 H5N1 viruses isolated from humans in China (2005 to 2010). We found a number of viral genotypes, not all of which have similar known avian virus counterparts. Guided by patient questionnaire data, we also obtained environmental samples from live poultry markets and dwellings frequented by six individuals prior to disease onset (2008 and 2009). H5N1 viruses were isolated from 4 of the 6 live poultry markets sampled. In each case, the genetic sequences of the environmental and corresponding human isolates were highly similar, demonstrating a link between human infection and live poultry markets. Therefore, infection control measures in live poultry markets are likely to reduce human H5N1 infection in China.
Collapse
|
5
|
Rao DM, Moler JC, Ozden M, Zhang Y, Liang C, Karro JE. PEACE: Parallel Environment for Assembly and Clustering of Gene Expression. Nucleic Acids Res 2010; 38:W737-42. [PMID: 20522511 PMCID: PMC2896108 DOI: 10.1093/nar/gkq470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We present PEACE, a stand-alone tool for high-throughput ab initio clustering of transcript fragment sequences produced by Next Generation or Sanger Sequencing technologies. It is freely available from www.peace-tools.org. Installed and managed through a downloadable user-friendly graphical user interface (GUI), PEACE can process large data sets of transcript fragments of length 50 bases or greater, grouping the fragments by gene associations with a sensitivity comparable to leading clustering tools. Once clustered, the user can employ the GUI's analysis functions, facilitating the easy collection of statistics and allowing them to single out specific clusters for more comprehensive study or assembly. Using a novel minimum spanning tree-based clustering method, PEACE is the equal of leading tools in the literature, with an interface making it accessible to any user. It produces results of quality virtually identical to those of the WCD tool when applied to Sanger sequences, significantly improved results over WCD and TGICL when applied to the products of Next Generation Sequencing Technology and significantly improved results over Cap3 in both cases. In short, PEACE provides an intuitive GUI and a feature-rich, parallel clustering engine that proves to be a valuable addition to the leading cDNA clustering tools.
Collapse
Affiliation(s)
- D M Rao
- Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | | | |
Collapse
|
6
|
Wan XF, Nguyen T, Davis CT, Smith CB, Zhao ZM, Carrel M, Inui K, Do HT, Mai DT, Jadhao S, Balish A, Shu B, Luo F, Emch M, Matsuoka Y, Lindstrom SE, Cox NJ, Nguyen CV, Klimov A, Donis RO. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007. PLoS One 2008; 3:e3462. [PMID: 18941631 PMCID: PMC2565130 DOI: 10.1371/journal.pone.0003462] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/22/2008] [Indexed: 12/05/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.
Collapse
Affiliation(s)
- Xiu-Feng Wan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Tung Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - C. Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Catherine B. Smith
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zi-Ming Zhao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Margaret Carrel
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kenjiro Inui
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
- Food and Agriculture Organization of Vietnam, Hanoi, Vietnam
| | - Hoa T. Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duong T. Mai
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Samadhan Jadhao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bo Shu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | - Michael Emch
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yumiko Matsuoka
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stephen E. Lindstrom
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cam V. Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Alexander Klimov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|