1
|
Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. PHYSIOLOGIA PLANTARUM 2025; 177:e70229. [PMID: 40302163 PMCID: PMC12041631 DOI: 10.1111/ppl.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025]
Abstract
Auxin is a central regulator of plant growth, development, and responses to environmental cues. How a single phytohormone mediates such a diverse array of developmental responses has remained a longstanding question in plant biology. Somehow, perception of the same auxin signal can lead to divergent responses in different organs, tissues, and cell types. These responses are primarily mediated by the nuclear auxin signaling pathway, composed of ARF transcription factors, Aux/IAA repressors, and TIR1/AFB auxin receptors, which act together to regulate auxin-dependent transcriptional changes. Transcriptional specificity likely arises through the functional diversity within these signaling components, forming many coordinated regulatory layers to generate unique transcriptional outputs. These layers include differential binding affinities for cis-regulatory elements, protein-protein interaction-specificity, subcellular localization, co-expression patterns, and protein turnover. In this review, we explore the experimental evidence of functional diversity within auxin signaling machinery and discuss how these differences could contribute to transcriptional output specificity.
Collapse
Affiliation(s)
- Joseph S. Taylor
- Virginia TechSchool of Plant and Environmental SciencesBlacksburgVAUSA
| | | |
Collapse
|
2
|
Rienstra J, Carrillo-Carrasco VP, de Roij M, Hernandez-Garcia J, Weijers D. A conserved ARF-DNA interface underlies auxin-triggered transcriptional response. Proc Natl Acad Sci U S A 2025; 122:e2501915122. [PMID: 40168121 PMCID: PMC12002309 DOI: 10.1073/pnas.2501915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 04/03/2025] Open
Abstract
Auxin Response Factor (ARF) plant transcription factors are the key effectors in auxin signaling. Their DNA-Binding Domain (DBD) contains a B3 domain that allows base-specific interactions with Auxin Response Elements (AuxREs) in DNA target sites. Land plants encode three phylogenetically distinct ARF classes: the closely related A- and B-classes have overlapping DNA binding properties, contrasting with the different DNA-binding properties of the divergent C-class ARFs. ARF DNA-binding divergence likely occurred early in the evolution of the gene family, but the molecular determinants underlying it remain unclear. Here, we show that the B3 DNA-binding residues are deeply conserved in ARFs, and variability within these is only present in tracheophytes, correlating with greatly expanded ARF families. Using the liverwort Marchantia polymorpha, we confirm the essential role of conserved DNA-contacting residues for ARF function. We further show that ARF B3-AuxRE interfaces are not mutation-tolerant, suggesting low evolvability that has led to the conservation of the B3-DNA interface between ARF classes. Our data support the almost complete interchangeability between A/B-class ARF B3 by performing interspecies domain swaps in M. polymorpha, even between ARF lineages that diverged over half a billion years ago. Our analysis further suggests that C-class ARF DNA-binding specificity diverged early during ARF evolution in a common streptophyte ancestor, followed by strong selection in A and B-class ARFs as part of a competition-based auxin response system.
Collapse
Affiliation(s)
- Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Wageningen6708WE, The Netherlands
| | | | - Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen6708WE, The Netherlands
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen6708WE, The Netherlands
| |
Collapse
|
3
|
Li P, Yang R, Liu J, Huang C, Huang G, Deng Z, Zhao X, Xu L. Coexpression Regulation of New and Ancient Genes in the Dynamic Transcriptome Landscape of Stem and Rhizome Development in "Bainianzhe"-An Ancient Chinese Sugarcane Variety Ratooned for Nearly 300 Years. PLANT, CELL & ENVIRONMENT 2025; 48:1621-1642. [PMID: 39462914 DOI: 10.1111/pce.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The sucrose yield in sugarcane largely depends on stem morphology, including length, diameter and sugar content, making sugarcane stem a key trait in breeding. The "Bainianzhe" variety from Songxi County, Fujian Province, possesses both aerial stems and rhizomes, providing a unique model for studying stem development. We performed a spatiotemporal transcriptomic analysis of the base, middle and apical sections of both aerial stems and rhizomes. The analysis categorized transcriptomes by developmental stage-base, middle and apical-rather than environmental differences. Apical segments were enriched with genes related to cell proliferation, while base segments were linked to senescence and fibrosis. Gene regulatory networks revealed key TFs involved in stem development. Orphan genes may be involved in rhizome development through coexpression networks. Plant hormones, especially genes involved in ABA and GAs synthesis, were highly expressed in rhizomes. Thiamine-related genes were also more prevalent in rhizomes. Furthermore, the apical segments of rhizomes enriched in photosynthesis-related genes suggest adaptations to light exposure. Low average temperatures in Songxi have led to unique cold acclimation in Bainianzhe, with rhizomes showing higher expression of genes linked to unsaturated fatty acid synthesis and cold-responsive calcium signalling. This indicates that rhizomes may have enhanced cold tolerance, aiding in the plant's overwintering success.
Collapse
Affiliation(s)
- Peiting Li
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiting Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiarui Liu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Huang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Huang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Chen Z, Zhou W, Guo X, Ling S, Li W, Wang X, Yao J. Heat Stress Responsive Aux/IAA Protein, OsIAA29 Regulates Grain Filling Through OsARF17 Mediated Auxin Signaling Pathway. RICE (NEW YORK, N.Y.) 2024; 17:16. [PMID: 38374238 PMCID: PMC10876508 DOI: 10.1186/s12284-024-00694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
High temperature during grain filling considerably reduces yield and quality in rice, but its molecular mechanisms are not fully understood. We investigated the functions of a seed preferentially expressed Aux/IAA gene, OsIAA29, under high temperature-stress in grain filling using CRISPR/Cas9, RNAi, and overexpression. We observed that the osiaa29 had a higher percentage of shrunken and chalkiness seed, as well as lower 1000-grain weight than ZH11 under high temperature. Meanwhile, the expression of OsIAA29 was induced and the IAA content was remarkably reduced in the ZH11 seeds under high temperature. In addition, OsIAA29 may enhance the transcriptional activation activity of OsARF17 through competition with OsIAA21 binding to OsARF17. Finally, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) results proved that OsARF17 regulated expression of several starch and protein synthesis related genes (like OsPDIL1-1, OsSS1, OsNAC20, OsSBE1, and OsC2H2). Therefore, OsIAA29 regulates seed development in high temperature through competition with OsIAA21 in the binding to OsARF17, mediating auxin signaling pathway in rice. This study provides a theoretical basis and gene resources for auxin signaling and effective molecular design breeding.
Collapse
Affiliation(s)
- Zhanghao Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xianyu Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wang Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Reddy VA, Saju JM, Nadimuthu K, Sarojam R. A non-canonical Aux/IAA gene MsIAA32 regulates peltate glandular trichome development in spearmint. FRONTIERS IN PLANT SCIENCE 2024; 15:1284125. [PMID: 38375083 PMCID: PMC10875047 DOI: 10.3389/fpls.2024.1284125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Phytohormone auxin controls various aspects of plant growth and development. The typical auxin signalling involves the degradation of canonical Aux/IAA proteins upon auxin perception releasing the auxin response factors (ARF) to activate auxin-regulated gene expression. Extensive research has been pursued in deciphering the role of canonical Aux/IAAs, however, the function of non-canonical Aux/IAA genes remains elusive. Here we identified a non-canonical Aux/IAA gene, MsIAA32 from spearmint (Mentha spicata), which lacks the TIR1-binding domain and shows its involvement in the development of peltate glandular trichomes (PGT), which are the sites for production and storage of commercially important essential oils. Using yeast two-hybrid studies, two canonical Aux/IAAs, MsIAA3, MsIAA4 and an ARF, MsARF3 were identified as the preferred binding partners of MsIAA32. Expression of a R2R3-MYB gene MsMYB36 and a cyclin gene MsCycB2-4 was altered in MsIAA32 suppressed plants indicating that these genes are possible downstream targets of MsIAA32 mediated signalling. Ectopic expression of MsIAA32 in Arabidopsis affected non-glandular trichome formation along with other auxin related developmental traits. Our findings establish the role of non-canonical Aux/IAA mediated auxin signalling in PGT development and reveal species-specific functionalization of Aux/IAAs.
Collapse
Affiliation(s)
| | | | | | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Rienstra J, Hernández-García J, Weijers D. To bind or not to bind: how AUXIN RESPONSE FACTORs select their target genes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6922-6932. [PMID: 37431145 PMCID: PMC10690724 DOI: 10.1093/jxb/erad259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Most plant growth and development processes are regulated in one way or another by auxin. The best-studied mechanism by which auxin exerts its regulatory effects is through the nuclear auxin pathway (NAP). In this pathway, Auxin Response Factors (ARFs) are the transcription factors that ultimately determine which genes become auxin regulated by binding to specific DNA sequences. ARFs have primarily been studied in Arabidopsis thaliana, but recent studies in other species have revealed family-wide DNA binding specificities for different ARFs and the minimal functional system of the NAP system, consisting of a duo of competing ARFs of the A and B classes. In this review, we provide an overview of key aspects of ARF DNA binding such as auxin response elements (TGTCNN) and tandem repeat motifs, and consider how structural biology and in vitro studies help us understand ARF DNA preferences. We also highlight some recent aspects related to the regulation of ARF levels inside a cell, which may alter the DNA binding profile of ARFs in different tissues. We finally emphasize the need to study minimal NAP systems to understand fundamental aspects of ARF function, the need to characterize algal ARFs to understand how ARFs evolved, how cutting-edge techniques can increase our understanding of ARFs, and which remaining questions can only be answered by structural biology.
Collapse
Affiliation(s)
- Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Jorge Hernández-García
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Jing H, Strader LC. AUXIN RESPONSE FACTOR protein accumulation and function. Bioessays 2023; 45:e2300018. [PMID: 37584215 PMCID: PMC10592145 DOI: 10.1002/bies.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo-cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | |
Collapse
|
8
|
Nguyen TT, Pham DT, Nguyen NH, Do PT, To HTM. The Germin-like protein gene OsGER4 is involved in heat stress response in rice root development. Funct Integr Genomics 2023; 23:271. [PMID: 37561192 DOI: 10.1007/s10142-023-01201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land. Recently, the development of the CRISPR/Cas9 gene editing system has allowed researchers to study functional genomics and engineer new rice varieties with great efficiency compared to conventional methods. In this study, we investigate the involvement of OsGER4, a germin-like protein identified by a genome-wide association study that is associated with rice root development under a stress hormone jasmonic acids treatment. Analysis of the OsGER4 promoter region revealed a series of regulatory elements that connect this gene to ABA signaling and water stress response. Under heat stress, osger4 mutant lines produce a significantly lower crown root than wild-type Kitaake rice. The loss of OsGER4 also led to the reduction of lateral root development. Using the GUS promoter line, OsGER4 expression was detected in the epidermis of the crown root primordial, in the stele of the crown root, and subsequently in the primordial of the lateral root. Taken together, these results illustrated the involvement of OsGER4 in root development under heat stress by regulating auxin transport through plasmodesmata, under control by both ABA and auxin signaling.
Collapse
Affiliation(s)
- Trang Thi Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Dan The Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Nhung Hong Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Huong Thi Mai To
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam.
| |
Collapse
|
9
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
10
|
Sghaier N, Essemine J, Ayed RB, Gorai M, Ben Marzoug R, Rebai A, Qu M. An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa. PLANTS (BASEL, SWITZERLAND) 2022; 12:71. [PMID: 36616201 PMCID: PMC9824623 DOI: 10.3390/plants12010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Quinoa constitutes among the tolerant plants to the challenging and harmful abiotic environmental factors. Quinoa was selected as among the model crops destined for bio-saline agriculture that could contribute to the staple food security for an ever-growing worldwide population under various climate change scenarios. The auxin response factors (ARFs) constitute the main contributors in the plant adaptation to severe environmental conditions. Thus, the determination of the ARF-binding sites represents the major step that could provide promising insights helping in plant breeding programs and improving agronomic traits. Hence, determining the ARF-binding sites is a challenging task, particularly in species with large genome sizes. In this report, we present a data fusion approach based on Dempster-Shafer evidence theory and fuzzy set theory to predict the ARF-binding sites. We then performed an "In-silico" identification of the ARF-binding sites in Chenopodium quinoa. The characterization of some known pathways implicated in the auxin signaling in other higher plants confirms our prediction reliability. Furthermore, several pathways with no or little available information about their functions were identified to play important roles in the adaptation of quinoa to environmental conditions. The predictive auxin response genes associated with the detected ARF-binding sites may certainly help to explore the biological roles of some unknown genes newly identified in quinoa.
Collapse
Affiliation(s)
- Nesrine Sghaier
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Laboratory of Advanced Technology and Intelligent Systems, National Engineering School of Sousse, Sousse 4023, Tunisia
| | - Jemaa Essemine
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, University of Carthage-Tunis, Tunis 1082, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam Lif 2050, Tunisia
| | - Mustapha Gorai
- Higher Institute of Applied Biology Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Sfax Biotechnology Center, B.P 1177, Sfax 3018, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Sfax Biotechnology Center, B.P 1177, Sfax 3018, Tunisia
| | - Mingnan Qu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Transcriptomic Data Meta-Analysis Sheds Light on High Light Response in Arabidopsis thaliana L. Int J Mol Sci 2022; 23:ijms23084455. [PMID: 35457273 PMCID: PMC9026532 DOI: 10.3390/ijms23084455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The availability and intensity of sunlight are among the major factors of growth, development and metabolism in plants. However, excessive illumination disrupts the electronic balance of photosystems and leads to the accumulation of reactive oxygen species in chloroplasts, further mediating several regulatory mechanisms at the subcellular, genetic, and molecular levels. We carried out a comprehensive bioinformatic analysis that aimed to identify genetic systems and candidate transcription factors involved in the response to high light stress in Arabidopsis thaliana L. using resources GEO NCBI, string-db, ShinyGO, STREME, and Tomtom, as well as programs metaRE, CisCross, and Cytoscape. Through the meta-analysis of five transcriptomic experiments, we selected a set of 1151 differentially expressed genes, including 453 genes that compose the gene network. Ten significantly enriched regulatory motifs for TFs families ZF-HD, HB, C2H2, NAC, BZR, and ARID were found in the promoter regions of differentially expressed genes. In addition, we predicted families of transcription factors associated with the duration of exposure (RAV, HSF), intensity of high light treatment (MYB, REM), and the direction of gene expression change (HSF, S1Fa-like). We predicted genetic components systems involved in a high light response and their expression changes, potential transcriptional regulators, and associated processes.
Collapse
|
13
|
Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:24557-24566. [PMID: 32929017 PMCID: PMC7533888 DOI: 10.1073/pnas.2009554117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.
Collapse
|
14
|
Nonhebel HM, Griffin K. Production and roles of IAA and ABA during development of superior and inferior rice grains. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:716-726. [PMID: 32438973 DOI: 10.1071/fp19291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Current understanding of the role of plant hormones during cereal grain filling is confounded by contradictory reports on hormone production that is based on poor methodology. We report here on the accurate measurement of indole-3-acetic acid (IAA) and abscisic acid (ABA) by combined liquid chromatography-tandem mass spectrometry in multiple reaction-monitoring mode with heavy isotope labelled internal standards. ABA and IAA contents of superior versus inferior rice grains (ABA maxima 159 ng g-1 FW and 109 ng g-1 FW, IAA maxima 2 µg g-1 FW and 1.7 µg g-1 FW respectively) correlated with the expression of biosynthetic genes and with grain fill. Results confirm that grain ABA is produced primarily by OsNCED2(5), but suggest that ABA import and metabolism also play important roles in ABA regulation. The IAA content of grains is primarily influenced by OsYUC9 and OsYUC11. However, the distinct expression profile of OsYUC12 suggests a specific role for IAA produced by this enzyme. Co-expression of OsYUC12 with OsIAA29 indicates their involvement in a common signalling pathway. Co-expression and cis-element analysis identified several aleurone-specific transcriptional regulators as well as glutelin as strong candidates for detailed investigation for direct regulation by the auxin-signalling pathway.
Collapse
Affiliation(s)
- Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia; and Corresponding author.
| | - Karina Griffin
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia; and Present address: Macadamia Processing Company, 2 Cowlong Road, Lindendale NSW 2480, Australia
| |
Collapse
|
15
|
Novikova DD, Cherenkov PA, Sizentsova YG, Mironova VV. metaRE R Package for Meta-Analysis of Transcriptome Data to Identify the cis-Regulatory Code behind the Transcriptional Reprogramming. Genes (Basel) 2020; 11:genes11060634. [PMID: 32526881 PMCID: PMC7348973 DOI: 10.3390/genes11060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
At the molecular level, response to an external factor or an internal condition causes reprogramming of temporal and spatial transcription. When an organism undergoes physiological and/or morphological changes, several signaling pathways are activated simultaneously. Examples of such complex reactions are the response to temperature changes, dehydration, various biologically active substances, and others. A significant part of the regulatory ensemble in such complex reactions remains unidentified. We developed metaRE, an R package for the systematic search for cis-regulatory elements enriched in the promoters of the genes significantly changed their transcription in a complex reaction. metaRE mines multiple expression profiling datasets generated to test the same organism’s response and identifies simple and composite cis-regulatory elements systematically associated with differential expression of genes. Here, we showed metaRE performance for the identification of low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE identified potential binding sites for known as well as unknown cold response regulators. A notable part of cis-elements was found in both searches discovering great conservation in low-temperature responses between plants and animals.
Collapse
Affiliation(s)
- Daria D. Novikova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Pavel A. Cherenkov
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
| | - Yana G. Sizentsova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
| | - Victoria V. Mironova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
16
|
Abstract
The root meristem-one of the plant's centers of continuous growth-is a conveyer belt in which cells of different identities are pushed through gradients along the root's longitudinal axis. An auxin gradient has long been implicated in controlling the progression of cell states in the root meristem. Recent work has shown that a PLETHORA (PLT) protein transcription factor gradient, which is under a delayed auxin response, has a dose-dependent effect on the differentiation state of cells. The direct effect of auxin concentration on differential transcriptional outputs remains unclear. Genomic and other analyses of regulatory sequences show that auxin responses are likely controlled by combinatorial inputs from transcription factors outside the core auxin signaling pathway. The passage through the meristem exposes cells to varying positional signals that could help them interpret auxin inputs independent of gradient effects. One open question is whether cells process information from the changes in the gradient over time as they move through the auxin gradient.
Collapse
Affiliation(s)
- Bruno Guillotin
- New York University, The Department of Biology, The Center for Genomics and Systems Biology, New York, NY, United States
| | - Kenneth D Birnbaum
- New York University, The Department of Biology, The Center for Genomics and Systems Biology, New York, NY, United States.
| |
Collapse
|
17
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
18
|
Stigliani A, Martin-Arevalillo R, Lucas J, Bessy A, Vinos-Poyo T, Mironova V, Vernoux T, Dumas R, Parcy F. Capturing Auxin Response Factors Syntax Using DNA Binding Models. MOLECULAR PLANT 2019; 12:822-832. [PMID: 30336329 DOI: 10.1016/j.molp.2018.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormone performing a wealth of functions throughout the life cycle of plants. It acts largely by regulating genes at the transcriptional level through a family of transcription factors called auxin response factors (ARFs). Even though all ARF monomers analyzed so far bind a similar DNA sequence, there is evidence that ARFs differ in their target genomic regions and regulated genes. Here, we report the use of position weight matrices (PWMs) to model ARF DNA binding specificity based on published DNA affinity purification sequencing (DAP-seq) data. We found that the genome binding of two ARFs (ARF2 and ARF5/Monopteros [MP]) differ largely because these two factors have different preferred ARF binding site (ARFbs) arrangements (orientation and spacing). We illustrated why PWMs are more versatile to reliably identify ARFbs than the widely used consensus sequences and demonstrated their power with biochemical experiments in the identification of the regulatory regions of IAA19, an well-characterized auxin-responsive gene. Finally, we combined gene regulation by auxin with ARF-bound regions and identified specific ARFbs configurations that are over-represented in auxin-upregulated genes, thus deciphering the ARFbs syntax functional for regulation. Our study provides a general method to exploit the potential of genome-wide DNA binding assays and to decode gene regulation.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Raquel Martin-Arevalillo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France; Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Jérémy Lucas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Adrien Bessy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Thomas Vinos-Poyo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Victoria Mironova
- Novosibirsk State University, Pirogova Street 2, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Lavrentyeva Avenue 10, Novosibirsk, Russia
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|
19
|
Biedroń M, Banasiak A. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. PLANT CELL REPORTS 2018; 37:1215-1229. [PMID: 29992374 PMCID: PMC6096608 DOI: 10.1007/s00299-018-2319-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 05/02/2023]
Abstract
The vascular system develops in response to auxin flow as continuous strands of conducting tissues arranged in regular spatial patterns. However, a mechanism governing their regular and repetitive formation remains to be fully elucidated. A model system for studying the vascular pattern formation is the process of leaf vascularization in Arabidopsis. In this paper, we present current knowledge of important factors and their interactions in this process. Additionally, we propose the sequence of events leading to the emergence of continuous vascular strands and point to significant problems that need to be resolved in the future to gain a better understanding of the regulation of the vascular pattern development.
Collapse
Affiliation(s)
- Magdalena Biedroń
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328, Wrocław, Poland
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328, Wrocław, Poland.
| |
Collapse
|
20
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
21
|
Cherenkov P, Novikova D, Omelyanchuk N, Levitsky V, Grosse I, Weijers D, Mironova V. Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:329-339. [PMID: 28992117 PMCID: PMC5853796 DOI: 10.1093/jxb/erx254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin regulates virtually every developmental process in land plants. This regulation is mediated via de-repression of DNA-binding auxin response factors (ARFs). ARFs bind TGTC-containing auxin response cis-elements (AuxREs), but there is growing evidence that additional cis-elements occur in auxin-responsive regulatory regions. The repertoire of auxin-related cis-elements and their involvement in different modes of auxin response are not yet known. Here we analyze the enrichment of nucleotide hexamers in upstream regions of auxin-responsive genes associated with auxin up- or down-regulation, with early or late response, ARF-binding domains, and with different chromatin states. Intriguingly, hexamers potentially bound by basic helix-loop-helix (bHLH) and basic leucine zipper (bZIP) factors as well as a family of A/T-rich hexamers are more highly enriched in auxin-responsive regions than canonical TGTC-containing AuxREs. We classify and annotate the whole spectrum of enriched hexamers and discuss their patterns of enrichment related to different modes of auxin response.
Collapse
Affiliation(s)
| | - Daria Novikova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
| | - Nadya Omelyanchuk
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Victor Levitsky
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Ivo Grosse
- Novosibirsk State University, Russian Federation
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Dolf Weijers
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
- Correspondence: or
| | - Victoria Mironova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Correspondence: or
| |
Collapse
|
22
|
Abstract
The luxurious vegetation at Sanya, the most southern location in China on the island of Hainan, provided a perfect environment for the 'Auxin 2016' meeting in October. As we review here, participants from all around the world discussed the latest advances in auxin transport, metabolism and signaling pathways, highlighting how auxin acts during plant development and in response to the environment in combination with other hormones. The meeting also provided a rich perspective on the evolution of the role of auxin, from algae to higher plants.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphanie Robert
- Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå 90183, Sweden
| |
Collapse
|
23
|
Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci Rep 2017; 7:2489. [PMID: 28559568 PMCID: PMC5449405 DOI: 10.1038/s41598-017-02476-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Auxin plays a pivotal role in virtually every aspect of plant morphogenesis. It simultaneously orchestrates a diverse variety of processes such as cell wall biogenesis, transition through the cell cycle, or metabolism of a wide range of chemical substances. The coordination principles for such a complex orchestration are poorly understood at the systems level. Here, we perform an RNA-seq experiment to study the transcriptional response to auxin treatment within gene groups of different biological processes, molecular functions, or cell components in a quantitative fold-change-specific manner. We find for Arabidopsis thaliana roots treated with auxin for 6 h that (i) there are functional groups within which genes respond to auxin with a surprisingly similar fold changes and that (ii) these fold changes vary from one group to another. These findings make it tempting to conjecture the existence of some transcriptional logic orchestrating the coordinated expression of genes within functional groups in a fold-change-specific manner. To obtain some initial insight about this coordinated expression, we performed a motif enrichment analysis and found cis-regulatory elements TBX1-3, SBX, REG, and TCP/site2 as the candidates conferring fold-change-specific responses to auxin in Arabidopsis thaliana.
Collapse
|
24
|
Trenner J, Poeschl Y, Grau J, Gogol-Döring A, Quint M, Delker C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:539-552. [PMID: 28007950 DOI: 10.1093/jxb/erw457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| |
Collapse
|
25
|
Abstract
Auxin is an essential molecule that controls almost every aspect of plant development. Although the core signaling components that control auxin response are well characterized, the precise mechanisms enabling specific responses are not yet fully understood. Considering the significance of auxin in plant growth and its potential applications, deciphering further aspects of its biology is an important and exciting challenge.
Collapse
Affiliation(s)
- Sebastien Paque
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Gelfand M. Introduction to selected papers from MCCMB 2015. J Bioinform Comput Biol 2016. [DOI: 10.1142/s0219720016020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|