1
|
Balázs B, Stoean Vasile B, Molnár É, Fischer-Fodor E, Bălăcescu O, Borlan R, Focsan M, Grozav A, Achimaş-Cadariu P, Gál E, Gaina L. meso-Substituted AB 3-type phenothiazinyl porphyrins and their indium and zinc complexes photosensitising properties, cytotoxicity and phototoxicity on ovarian cancer cells. RSC Med Chem 2025; 16:747-766. [PMID: 39568597 PMCID: PMC11575637 DOI: 10.1039/d4md00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024] Open
Abstract
New meso-substituted AB3-type phenothiazinyl porphyrins and ferrocenylvinyl phenothiazinyl porphyrin were synthesised by Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions, respectively. The free porphyrins were further used in the synthesis of new indium(iii) or zinc(ii) porphyrin complexes. All porphyrins exhibit red fluorescence emission in solution, a property that remains unimpaired following internalisation in ovarian A2780 cancer cells, as evidenced by fluorescence microscopy images. The In(iii) phenothiazinyl porphyrin complexes show a higher quantum yield of fluorescence emission (2aΦ F = 30%, 4aΦ F = 29%, 5aΦ F = 28%) compared to the free base porphyrin precursors, or Zn(ii) complex 4b (Φ F = 10%). The potential of novel phenothiazinyl porphyrins to act as photosensitisers was evaluated using two distinct approaches. The first was through the measurement of the singlet oxygen quantum yield Φ Δ(1O2), while the second employed in vitro measurements of metabolic activity, oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf-2) activation and tumour necrosis factor-alpha (TNF-α) under both dark and light irradiation conditions. As reflected by the IC50 values, the most potent cytotoxicity of the phenothiazinyl porphyrins against the A2780 cells was observed for In(iii) ferrocenylvinyl phenothiazinyl porphyrin 4a (36.38 μM), the remaining compounds are less cytotoxic. The reduction in metabolic activity was observed in A2780 ovarian tumour cells treated with 4a and 6a and exposed to light compared to treatment in the absence of light. The oxidative stress, TNF-α and Nrf-2 transcription factor were particularly notable when A2780 cells were treated with 4a and subsequently photoirradiated, the oxidative stress was linked to the highest value of Φ Δ(1O2) recorded for 4a (60%).
Collapse
Affiliation(s)
- Brém Balázs
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Bianca Stoean Vasile
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Éva Molnár
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Eva Fischer-Fodor
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
| | - Ovidiu Bălăcescu
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University 42 Treboniu Laurian Street 400271 Cluj-Napoca Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University 42 Treboniu Laurian Street 400271 Cluj-Napoca Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University 1 M. Kogalniceanu Street 400084 Cluj-Napoca Romania
| | - Adriana Grozav
- Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy Victor Babes 41 RO-400012 Cluj-Napoca Romania
| | - Patriciu Achimaş-Cadariu
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
- Department of Oncological Surgery and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy RO-400012 Cluj-Napoca Romania
| | - Emese Gál
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Luiza Gaina
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| |
Collapse
|
2
|
Raviranga NGH, Ramström O. Antimicrobial Delivery Using Metallophore-Responsive Dynamic Nanocarriers. ACS APPLIED BIO MATERIALS 2024; 7:4785-4794. [PMID: 38963757 DOI: 10.1021/acsabm.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
3
|
Soy R, Babu B, Mack J, Nyokong T. The photodynamic activity properties of a series of structurally analogous tetraarylporphyrin, chlorin and N-confused porphyrin dyes and their Sn(IV) complexes. Photodiagnosis Photodyn Ther 2023; 44:103815. [PMID: 37777078 DOI: 10.1016/j.pdpdt.2023.103815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
A series of tetraarylporphyrin, -chlorin and N-confused porphyrin dyes with 4‑methoxy‑meso-aryl rings (1-Por, 1-Chl and 1-NCP) and their Sn(IV) complexes (1-SnPor, 1-SnChl and 1-SnNCP) have been synthesized and characterized. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.67, 0.71 and 0.85 for 1-SnPor, 1-SnChl and 1-SnNCP, respectively. The photodynamic activities of 1-Por, 1-Chl, 1-NCP, 1-SnPor, 1-SnChl and 1-SnNCP were determined against MCF-7 breast cancer cells through illumination with Thorlabs 625 or 660 nm (240 or 280 mW.cm-2) light emitting diodes (LEDs) for 20 min. The IC50 values for 1-SnChl and 1-SnNCP lie between 1.4 - 6.1 and 1.6 - 4.8 µM upon photoirradiation with the 660 and 625 nm LEDs, respectively, while higher values of >10 µM were obtained for 1-SnPor and the free base dyes. In a similar manner, 1-SnChl and 1-SnNCP were found to also have significantly higher photodynamic antimicrobial activity against planktonic Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli bacteria than the other dyes studied. Upon illumination with Thorlabs 625 and 660 nm LEDs for 75 min, Log10 reduction values of 7.62 and > 2.40-3.69 were obtained with 1 and 5 µM solutions, respectively.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, SRM University - AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Ledwaba MM, Magaela NB, Ndlovu KS, Mack J, Nyokong T, Managa M. Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots. Photodiagnosis Photodyn Ther 2022; 40:103127. [PMID: 36162756 DOI: 10.1016/j.pdpdt.2022.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Pathogenic microorganisms may continue causing infection through the transfer of antibiotic resistance genes. As a result, the efficacy of pharmaceuticals in microbial inactivation is deteriorating. The present study was conducted to investigate the antimicrobial activity of neutral and quaternized free base and Zn 5,10,15,20-tetra(pyridin-3-yl) porphyrins on Escherichia coli (E. coli), a gram-negative bacterium that causes cholecystitis, pneumonia and urinary tract infections. Conjugation of the porphyrin to graphene quantum dots (GQDs) was implemented to enhance photocatalysis and reactive oxygen species generation. Density functional theory (DFT) geometry optimizations for free base and Zn porphyrin based on the B3LYP (Becke 3-Parameter (Exchange), Lee, Yang and Parr) functional of the Gaussian09 program package and Time-dependent density-functional theory (TD-DFT) calculations of the associated UV-visible absorption spectra are reported to analyse the electronic structure and optical properties of the porphyrins. The TD-DFT calculations showed that for both porphyrins the value of highest occupied molecular orbital (ΔHOMO) is greater than that of lowest unoccupied molecular orbital (ΔLUMO) which tells that there is no unusual splitting of (LUMO) orbitals which may be caused by systematic error in TD-DFT calculations. Due to the red shift in the spectrum of ZnT(3-Py)P and the ΔLUMO being higher, the HOMO-LUMO gap was expected to be lower than that of H2T(3-Py)P. The photophysical properties and Photodynamic antimicrobial chemotherapy activities of these nanoconjugates were investigated. The highest ΦΔ was that of Q-ZnT(3-Py)P- GDQs at 0.69 with the log reduction of 9.42.
Collapse
Affiliation(s)
| | | | - Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa.
| |
Collapse
|
5
|
Magaela NB, Makola LC, Managa M, Nyokong T. Photodynamic activity of novel cationic porphyrins conjugated to graphene quantum dots against Staphylococcus aureus. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel 5-(pyridyl)-10-15-20-tris(4-bromophenyl) porphyrin (complex 1), indium metal derivative (complex 2), and quaternized derivative (complex 3) were synthesized and conjugated to graphene quantum dots (GQDs). The conjugation of the porphyrins to GQDs was through [Formula: see text]-[Formula: see text] stacking. Herein, the [Formula: see text]-[Formula: see text] stacking approach was used to avoid covalent conjugation which might compromise the intrinsic chemical and physical properties. The photodynamic activities of the proposed nanomaterials were assessed towards Staphylococcus aureus cell obliteration. The photophysical properties of the prepared complexes were also studied prior to the application. Moreover, a decrease in fluorescence lifetimes was observed upon metalation of complex 1. As anticipated, singlet oxygen quantum yield ([Formula: see text] increased notably upon heavy metal (indium) insertion and upon composite formation. Antimicrobial photodynamic therapy comparative studies were done on quaternized and unquaternized indium porphyrins conjugated to GQDs. Complex 3-GQDs exhibited the highest antibacterial activities compared to other complexes, and this was attributed to the high [Formula: see text] which plays an imperative role in photodynamic therapy applications.
Collapse
Affiliation(s)
- N. Bridged Magaela
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Lekgowa C. Makola
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
6
|
Makola LC, Nwahara N, Managa M, Nyokong T. Photodynamic therapy activity of 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin conjugated to graphene quantum dot against MCF-7 breast cancer cells. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2087515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lekgowa Collen Makola
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Nnamdi Nwahara
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|
7
|
Magaela NB, Matshitse R, Babu B, Managa M, Prinsloo E, Nyokong T. Sn(IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Hurtado CR, Hurtado GR, de Cena GL, Queiroz RC, Silva AV, Diniz MF, dos Santos VR, Trava-Airoldi V, Baptista MDS, Tsolekile N, Oluwafemi OS, Conceição K, Tada DB. Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1393. [PMID: 34070326 PMCID: PMC8227420 DOI: 10.3390/nano11061393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of -23 mV. The antibacterial activity of ND-mTHPP was evaluated against Escherichia coli for different incubation times (0-24 h). The optimal activity was observed after 2 h of incubation and irradiation (660 nm; 51 J/cm2) performed right after the addition of ND-mTHPP (100 μg/mL) to the bacterial suspension. The inhibitory activity was 56% whereas ampicillin at the same conditions provided only 14% of bacterial growth inhibition. SEM images showed agglomerate of ND-mTHPP adsorbed on the bacterial cell wall, suggesting that the antimicrobial activity of ND-mTHPP was afforded by inducing membrane damage. Cytotoxicity against murine embryonic fibroblast cells (MEF) was also evaluated and ND-mTHPP was shown to be noncytotoxic since viability of cells cultured for 24 h in the presence of the nanoconjugate (100 μg/mL) was 78%. Considering the enhanced antibacterial activity and the absence of cytotoxic effect, it is possible to consider the ND-mTHPP nanoconjugate as promising platform for application in antimicrobial photodynamic therapy (aPDT).
Collapse
Affiliation(s)
- Carolina Ramos Hurtado
- Federal Institute of São Paulo (IFSP), São José dos Campos 12223-201, São Paulo, Brazil; (C.R.H.); (R.C.Q.)
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Gabriela Ramos Hurtado
- Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-004, São Paulo, Brazil;
- Institute of Advanced Sea Studies (IEAMAr), São Paulo State University (UNESP), São José dos Campos 12247-004, São Paulo, Brazil
| | - Gabrielle Lupeti de Cena
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Rafaela Campos Queiroz
- Federal Institute of São Paulo (IFSP), São José dos Campos 12223-201, São Paulo, Brazil; (C.R.H.); (R.C.Q.)
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
| | | | - Milton Faria Diniz
- Fundamental Sciences Division, Technological Institute of Aeronautics (ITA), São José dos Campos 12228-900, São Paulo, Brazil;
| | - Verônica Ribeiro dos Santos
- Bioceramics Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil;
| | - Vladimir Trava-Airoldi
- Sensors and Materials Associated Laboratory, National Institute for Space Research (INPE), São José dos Campos 12227-010, São Paulo, Brazil;
| | - Maurício da Silva Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-000, São Paulo, Brazil;
| | - Ncediwe Tsolekile
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (N.T.); (O.S.O.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (N.T.); (O.S.O.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Katia Conceição
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Dayane Batista Tada
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
| |
Collapse
|
9
|
Babu B, Mack J, Nyokong T. An octabrominated Sn(iv) tetraisopropylporphyrin as a photosensitizer dye for singlet oxygen biomedical applications. Dalton Trans 2021; 49:9568-9573. [PMID: 32578634 DOI: 10.1039/d0dt01915a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two novel Sn(iv) tetraisopropylphenylporphyrins have been synthesized to explore the effect of octabromination at the β-pyrrole positions on their photophysical properties and photodynamic activity. The lower energy Q band of an octabrominated complex lies at 675 nm well within the therapeutic window. The octabrominated dye has a relatively high singlet oxygen quantum yield of 0.78 in DMF and exhibits favorable photodynamic activity against MCF-7 cells with an IC50 value of 10.7 μM and a 5.74 log reduction value (5 μM) towards S. aureus under illumination at 660 nm for 60 min with a Thorlabs M660L3 LED (280 mW cm-2).
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
10
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
12
|
Openda YI, Nyokong T. Detonation nanodiamonds-phthalocyanine photosensitizers with enhanced photophysicochemical properties and effective photoantibacterial activity. Photodiagnosis Photodyn Ther 2020; 32:102072. [PMID: 33130028 DOI: 10.1016/j.pdpdt.2020.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
The nanophotosensitizers based on acetophenoxy tetrasubstituted metallophthalocyanines (MPc) and detonation nanodiamonds (DNDs) were successfully formed and their photophysicochemical properties were determined. The zinc(II)Pc and indium(III)Pc complexes along with their nanoconjugates were found to have high singlet oxygen quantum yields (0.72 - 0.84) associated with the heavy central metal effect. The ability of the functional groups present on the DNDs to bind to the bacteria cell and the improved solubility of the nanoconjugates due to DNDs resulted in effective photodynamic antimicrobial therapy (PACT) activity against S. aureus planktonic cells, with the highest log reduction of 9.72 ± 0.02 for the conjugate of InPc conjugate with DNDs after 30 min irradiation. PACT studies were investigated at a dose of 10 μg/mL for each sample. The results suggest that the readily synthesized nanoconjugates can be used as appropriate PACT agents.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
13
|
Dingiswayo S, Babu B, Prinsloo E, Mack J, Nyokong T. A comparative study of the photophysicochemical and photodynamic activity properties of meso-4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tin(IV) complexes of a 4-methylthiophenyl functionalized porphyrin (1-Sn) and its corrole analogue (2-Sn) were synthesized so that their photophysicochemical properties and photodynamic activities against MCF-7 breast cancer cells could be compared. Singlet oxygen luminescence studies revealed that 1-Sn and 2-Sn have comparable [Formula: see text] values in DMF of 0.59 and 0.60, respectively, while the IC[Formula: see text] values after irradiation of MCF-7 cells for 30 min with a Thorlabs 625 nm LED (432 J · cm[Formula: see text] were determined to be 12.4 and 8.9 [Formula: see text]M. The results demonstrate that the cellular uptake of 2-Sn and its molar absorptivity at the irradiation wavelength play a crucial role during in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Somila Dingiswayo
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
14
|
Shinohara A, Pan C, Wang L, Shinmori H. Acid–base controllable singlet oxygen generation in supramolecular porphyrin–gold nanoparticle composites tethered by rotaxane linkers. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461950086x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanically-interlocked photosensitizer–quencher systems based on free-base tetraphenylporphyrin (H2TPP)–gold nanoparticle (AuNP) composites has been designed and synthesized by utilizing a rotaxane architecture comprised of secondary ammonium and crown ether subunit. The H2TPP-substituted 24-crown-8 was able to shuttle along the alkanethiolate axle, triggered by deprotonation/protonation at the ammonium station, altering the H2TPP–AuNP distance and the photoexcitation energy transfer efficiency. Upon switching, quantum yields for photosensitized singlet oxygen (1O[Formula: see text] generation and fluorescence after deprotonation were quenched by 46% and 42%, respectively. External environment-responsive1O2generation based on such a protonation/deprotonation-driven molecular switch is potentially advantageous for a variety of applications including photodynamic therapies.
Collapse
Affiliation(s)
- Akira Shinohara
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Nanhai Boulevard 3688, Nanshan, Shenzhen 518060, China
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Chengjun Pan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Nanhai Boulevard 3688, Nanshan, Shenzhen 518060, China
| | - Hideyuki Shinmori
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
15
|
Grigore ME, Ion RM, Iancu L, Grigorescu RM. Tailored porphyrin–gold nanoparticles for biomedical applications. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461930012x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this review we present an updated survey of the main synthesis methods of gold nanoparticles (AuNPs) in order to obtain various tailored nanosystems for biomedical imaging. The synthesis approach significantly impacts on the AuNPs properties such as surface chemistry, biocompatibility and cytotoxicity. In recent years, nanomedicine emphasized the development of functionalized AuNPs for biomedical imaging. AuNPs are a good option for used as delivery photosensitizer agents for PDT of cancer. For example, the complex formed from AuNPs functionalized with PEGylate porphyrins presents several advantages in the medical field such as a better use in photodynamic therapy because of high triplet states and singlet oxygen quantum yield efficiency of porphyrin molecules.
Collapse
Affiliation(s)
- Madalina E. Grigore
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| | - Rodica-M. Ion
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Lorena Iancu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Ramona M. Grigorescu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| |
Collapse
|