1
|
Cheng J, Wang C, Guo L, Gu Y. Development of heparinized and hepatocyte growth factor-coated acellular scaffolds using porcine carotid arteries. J Biomed Mater Res B Appl Biomater 2024; 112:e35317. [PMID: 37584376 DOI: 10.1002/jbm.b.35317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Tissue-engineered blood vessel substitutes have been developed due to the lack of suitable small-diameter vascular grafts. Xenogeneic extracellular matrix (ECM) scaffolds have the potential to provide an ideal source for off-the-shelf vascular grafts. In this study, porcine carotid arteries were used to develop ECM scaffolds by decellularization and coating with heparin and hepatocyte growth factor (HGF). After decellularization, cellular and nucleic materials were successfully removed with preservation of the main compositions (collagen, elastin, and basement membrane) of the native ECM. The ultimate tensile strength, suture strength, and burst pressure were significantly increased after cross-linking. Pore size distribution analysis revealed a porous structure within ECM scaffolds with a high distribution of pores larger than 10 μm. Heparinized scaffolds exhibited sustained release of heparin in vitro and showed potent anticoagulant activity by prolonging activated partial thromboplastin time. The scaffolds showed an enhanced HGF binding capacity as well as a constant release of HGF as a result of heparin modification. When implanted subcutaneously in rats, the modified scaffolds revealed good biocompatibility with enzyme degradation resistance, mitigated immune response, and anti-calcification. In conclusion, heparinized and HGF-coated acellular porcine carotid arteries may be a promising biological scaffold for tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Fooladi S, Faramarz S, Dabiri S, Kajbafzadeh A, Nematollahi MH, Mehrabani M. An efficient strategy to recellularization of a rat aorta scaffold: an optimized decellularization, detergent removal, and Apelin-13 immobilization. Biomater Res 2022; 26:46. [PMID: 36138491 PMCID: PMC9502639 DOI: 10.1186/s40824-022-00295-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tissue engineering of native vessels is an alternative approach for patients with vascular disease who lack sufficient saphenous vein or other suitable conduits for autologous vascular graft. Moreover, the harvest of vessels prolongs the surgical procedure and it may lead to the morbidity of donor site in elder patients: therefore, it seems that the use of tissue-engineered vessels would be an attractive and less invasive substitute for autologous vascular grafts. Apelin-13 plays a pivotal role in cell proliferation, survival, and attachment; therefore, covalent attachment of apelin-13 to the acellular scaffolds might be a favorable approach for improving recellularization efficacy. Methods In the present study, the decellularization process was performed using various detergents. Afterward, the efficacy of decellularization procedure was evaluated using multiple approaches including assessment of DNA, hydroxyproline, and GAG content as well as Masson’s trichrome and orcein staining used for collagen and elastin determination. Subsequently, the scaffold was bioconjugated with apelin-13 using the EDC-NHS linker and acellular scaffolds were recellularized using fibroblasts, endothelial cells, and smooth muscle cells. SEM images and characterization methods were also used to evaluate the effect of apelin-13 attachment to the acellular scaffold on tissue recellularization. We also developed a novel strategy to eliminate the remnant detergents from the scaffold and increase cell viability by incubating acellular scaffolds with Bio-Beads SM-2 resin. Testometric tensile testing machine was also used for the assessment of mechanical properties and uniaxial tensile strength of decellularized and recellularized vessels compared to that of native tissues. Results Our results proposed 16-h perfusion of 0.25% sodium dodecyl sulfate (SDS) + 0.5% Triton X-100 combination to the vessel as an optimal decellularization protocol in terms of cell elimination as well as extracellular matrix preservation. Furthermore, the results demonstrated considerable elevation of cell adhesion and proliferation in scaffolds bioconjugated with apelin-13. The immunohistochemical (IHC) staining of CD31, α-SMA, and vimentin markers suggested placement of seeded cells in the suitable sites and considerable elevation of cell attachment within the scaffolds bioconjugated with apelin-13 compared to the non-bioconjugated, and decellularized groups. Moreover, the quantitative analysis of IHC staining of CD31, α-SMA, and vimentin markers suggested considerable elevation in the number of endothelial, smooth muscle, and fibroblast cells in the recellularized scaffolds bioconjugated with apelin-13 group (1.4% ± 0.02, 6.66% ± 0.23, and 9.87% ± 0.13%, respectively) compared to the non-bioconjugated scaffolds (0.03% ± 0.01, 0.28% ± 0.01, and 1.2% ± 0.09%, respectively) and decellularized groups (0.03% ± 0.007, 0.05% ± 0.01, and 0.13% ±0.005%, respectively). Although the maximum strain to the rupture was reduced in tissues decellularized using 0.5% SDS and CHAPS compared to that of native ones (116% ± 6.79, 139.1% ± 3.24, and 164% ± 8.54%, respectively), ultimate stress was decreased in all decellularized and recellularized groups. Besides, our results indicated that cell viability on the 1st, 3rd, and 7th day was 100.79% ± 0.7, 100.34% ± 0.08, and 111.24% ± 1.7% for the decellularized rat aorta conjugated with apelin-13, which was incubated for 48-h with Bio-Beads SM-2, and 73.37% ± 7.99, 47.6% ± 11.69, and 27.3% ± 7.89% for decellularized rat aorta scaffolds conjugated with apelin-13 and washed 48-h by PBS, respectively. These findings reveal that the incubation of the scaffold with Bio-Beads SM-2 is a novel and promising approach for increasing cell viability and growth within the scaffold. Conclusions In conclusion, our results provide a platform in which xenograft vessels are decellularized properly in a short time, and the recellularization process is significantly improved after the bioconjugation of the acellular scaffold with apelin-13 in terms of cell adhesion and viability within the scaffold. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cells Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolmohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Clinical Biochemistry, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
5
|
Norasi H, Tetteh E, Money SR, Davila VJ, Meltzer AJ, Morrow MM, Fortune E, Mendes BC, Hallbeck MS. Intraoperative posture and workload assessment in vascular surgery. APPLIED ERGONOMICS 2021; 92:103344. [PMID: 33359926 DOI: 10.1016/j.apergo.2020.103344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/31/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Quantifying the workload and postural demand on vascular surgeons provides valuable information on the physical and cognitive factors that predispose vascular surgeons to musculoskeletal pain and disorders. The aim of this study was to quantify the postural demand, workload, and discomfort experienced by vascular surgeons and to identify procedural factors that influence surgical workload. Both objective (wearable posture sensors) and subjective (surveys) assessment tools were used to evaluate intraoperative workload during 47 vascular surgery procedures. Results demonstrate unfavorable neck and low back postures as well as high pain scores for those body segments. Additionally, workload from subjective surveys increased significantly as a function of operative duration, and mental workload was high across all procedure types. Neck postural risk exposure and physical demand were among the variables that increased with surgical duration, procedure type, and loupes used by the surgeons. Correlations among postural angles and pain scores showed consistency between the objective assessment and the subjective surveys for neck and trunk. The authors believe that the results of this study highlight the need for developing mitigating measures such as ergonomic interventions for vascular surgery.
Collapse
Affiliation(s)
- Hamid Norasi
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA; Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA
| | - Emmanuel Tetteh
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA; Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Melissa M Morrow
- Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Emma Fortune
- Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - M Susan Hallbeck
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA; Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Leeten K, Ditkowski B, Jashari R, Mela P, Jones EAV, Heying R. An In Vitro Model to Study Endothelialization of Cardiac Graft Tissues Under Flow. Tissue Eng Part C Methods 2021; 27:233-241. [PMID: 33544046 DOI: 10.1089/ten.tec.2020.0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary valve replacement is performed with excellent resultant hemodynamics in patients that have underlying congenital or acquired heart valve defects. Despite recent advancements in right ventricular outflow tract reconstruction, an increased risk of developing infective endocarditis remains, which has a more common occurrence for conduits of bovine jugular vein (BJV) origin compared with cryopreserved homografts. The reason for this is unclear although it is hypothesized to be associated with an aberrant phenotypic state of cells that reendothelialize the graft tissue postimplantation. The aim of this study was to develop an in vitro model that enables the analysis of endothelial cell (EC) attachment to cardiac graft tissues under flow. In the experiments, EC attachment was optimized on bovine pericardium (BP) patch using human umbilical vein ECs. Different biological coatings, namely gelatin, fibronectin, plasma, or a combination of fibronectin and plasma were tested. After cell adaptation, graft tissues were exposed to laminar flow in a parallel-plate flow chamber. Cell retention to the tissue was analyzed after nuclear staining with YO-PRO-1 and a membranous localization of VE-cadherin. Experiments showed that combined coating with fibronectin and blood plasma together with a two-phased shear pattern resulted in a relevant cell monolayer on BP patch and cryopreserved homograft. For BJV tissue, no adherent cells under both static and shear conditions were initially observed. In conclusion, having established the new flow chamber system we could obtain EC layers on the surface of BP patch and cryopreserved pulmonary homograft tissues. The presented in vitro system can serve as a competent model to study cell phenotypes on cardiac grafts in the close-to-physiologic environment. Moreover, this approach allows broad applications and enables further development by testing more complex conditions.
Collapse
Affiliation(s)
- Kirsten Leeten
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| | - Bartosz Ditkowski
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| | - Ramadan Jashari
- Saint Jean Clinique, European Homograft Bank, Brussels, Belgium
| | - Petra Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Medical Materials and Implants, Technical University Munich, Munich, Germany
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruth Heying
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| |
Collapse
|
7
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
8
|
He Z, Liu G, Ma X, Yang D, Li Q, Li N. Comparison of small-diameter decellularized scaffolds from the aorta and carotid artery of pigs. Int J Artif Organs 2020; 44:350-360. [PMID: 32988264 DOI: 10.1177/0391398820959350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Tissue-specific extracellular matrix promotes tissue regeneration and repair. We aimed to identify the optimal decellularized matrices for tissue-engineered vascular graft (TEVG). METHODS Decellularized aorta of fetal pigs (DAFP, n = 6, group A), decellularized aorta of adult pigs (DAAP, n = 6, group B), and decellularized carotid artery of adult pigs (DCAP, n = 6, group C) were prepared. Scaffolds were compared using histology and ultrastructure. Endothelial cell (EC) and myofibroblast (MFB) infiltration assessments were performed in vitro. Cell infiltration was measured in vivo. Biomechanical properties were also determined. RESULTS Almost original cells were removed by the acellularization procedure, while the construction of the matrix basically remained. In vitro, monolayer ECs and multi-layer MFBs were formed onto the internal surface of the specimens after 3 weeks. In vivo, cell infiltration in group A significantly increased at the 6th and 8th week when compared with groups B and C (p < 0.01). The infiltrated cells were mainly MFBs and a few CD4+ T-lymphocytes/macrophages in the specimens. Groups A and B showed greater axial compliance than group C (p < 0.01). CONCLUSION DAFP was the most suitable for use as a small-caliber vascular graft.
Collapse
Affiliation(s)
- Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingchun Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Sphingosine-1-phosphate in Endothelial Cell Recellularization Improves Patency and Endothelialization of Decellularized Vascular Grafts In Vivo. Int J Mol Sci 2019; 20:ijms20071641. [PMID: 30987025 PMCID: PMC6480112 DOI: 10.3390/ijms20071641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background: S1P has been shown to improve the endothelialization of decellularized vascular grafts in vitro. Here, we evaluated the potential of tissue-engineered vascular grafts (TEVGs) constructed by ECs and S1P on decellularized vascular scaffolds in a rat model. Methods: Rat aorta was decellularized mainly by 0.1% SDS and characterized by histology. Rat ECs, were seeded onto decellularized scaffolds, and the viability of the ECs was evaluated by biochemical assays. Then, we investigated the in vivo patency rate and endothelialization for five groups of decellularized vascular grafts (each n = 6) in a rat abdominal aorta model for 14 days. The five groups included (1) rat allogenic aorta (RAA); (2) decellularized RAA (DRAA); (3) DRAA with S1P (DRAA/S1P); (4) DRAA with EC recellularization (DRAA/EC); and (5) DRAA with S1P and EC recellularization (DRAA/EC/S1P). Results: In vitro, ECs were identified by the uptake of Dil-Ac-LDL. S1P enhanced the expression of syndecan-1 on ECs and supported the proliferation of ECs on decellularized vascular grafts. In vivo, RAA and DRAA/EC/S1P both had 100% patency without thrombus formation within 14 days. Better endothelialization, more wall structure maintenance and less inflammation were noted in the DRAA/EC/S1P group. In contrast, there was thrombus formation in the DRAA, DRAA/S1P and DRAA/EC groups. Conclusion: S1P could inhibit thrombus formation to improve the patency rate of EC-covered decellularized vascular grafts in vivo and may play an important role in the construction of TEVGs.
Collapse
|
12
|
van Uden S, Vanerio N, Catto V, Bonandrini B, Tironi M, Figliuzzi M, Remuzzi A, Kock L, Redaelli ACL, Greco FG, Riboldi SA. A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: towards in situ tissue-engineered vascular accesses for haemodialysis. ACTA ACUST UNITED AC 2019; 14:025007. [PMID: 30620939 DOI: 10.1088/1748-605x/aafc96] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane® graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane® graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration.
Collapse
Affiliation(s)
- Sebastião van Uden
- Bioengineering Laboratories S.r.l., Cantù, Italy. Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
14
|
Row S, Swartz DD, Andreadis ST. Animal models of cardiovascular disease as test beds of bioengineered vascular grafts. ACTA ACUST UNITED AC 2018; 24:37-45. [PMID: 30505334 DOI: 10.1016/j.ddmod.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The last two decades have seen many advances in regenerative medicine, including the development of tissue engineered vessels (TEVs) for replacement of damaged or diseased arteries or veins. Biomaterials from natural sources as well as synthetic polymeric materials have been employed in engineering vascular grafts. Recently, cell-free grafts have become available opening new possibilities for the next generation, off-the-shelf products. These TEVs are first tested in small or large animal models, which are usually young and healthy. However, the majority of patients in need of vascular grafts are elderly and suffer from comorbidities that may complicate their response to the implants. Therefore, it is important to evaluate TEVs in animal models of vascular disease in order to increase their predictive value and learn how the disease microenvironment may affect the patency and remodeling of vascular grafts. Small animals with various disease phenotypes are readily available due to the availability of transgenic or gene knockout technologies and can be used to address mechanistic questions related to vascular grafting. On the other hand, large animal models with similar anatomy, hematology and thrombotic responses to humans have been utilized in a preclinical setting. We propose that large animal models with certain pathologies or age range may provide more clinically relevant platforms for testing TEVs and facilitate the clinical translation of tissue engineering technologies by increasing the likelihood of success in clinical trials.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,Angiograft LLC, Amherst NY
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY.,Angiograft LLC, Amherst NY
| |
Collapse
|