1
|
Wang WB, Li JJ, Weng GJ, Zhu J, Guo YB, Zhao JW. An anisotropic nanobox based core-shell-satellite nanoassembly of multiple SERS enhancement with heterogeneous interface for stroke marker determination. J Colloid Interface Sci 2023; 647:81-92. [PMID: 37245272 DOI: 10.1016/j.jcis.2023.05.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Herein, A novel gold-silver alloy nanobox (AuAgNB)@SiO2-gold nanosphere (AuNP) nanoassembly based on core-shell-satellite structure is fabricated and applied to the surface-enhanced Raman scattering (SERS) detection of S100 calcium-binding protein B protein (S100B). It contains an anisotropic hollow porous AuAgNB core with rough surface, an ultrathin silica interlayer labeled with reporter molecules, and AuNP satellites. The nanoassemblies were systematically optimized by tuning the reporter molecules concentration, silica layer thickness, AuAgNB size, and the size and number of AuNP satellite size. Remarkably, AuNP satellites are adjacent to AuAgNB@SiO2, developing AuAg-SiO2-Au heterogeneous interface. With the strong plasmon coupling between AuAgNB and AuNP satellites, chemical enhancement from heterogeneous interface, and the tip "hot spots" of AuAgNB, the SERS activity of the nanoassemblies was multiply enhanced. Additionally, the stability of nanostructure and Raman signal was significantly improved by the silica interlayer and AuNP satellites. Eventually, the nanoassemblies were applied for S100B detection. It demonstrated satisfactory sensitivity and reproducibility with a wide detection range of 10 fg/mL-10 ng/mL and a limit of detection (LOD) of 1.7 fg/mL. This work based on the AuAgNB@SiO2-AuNP nanoassemblies with multiple SERS enhancements and favorable stability demonstrates the promising application in stroke diagnosis.
Collapse
Affiliation(s)
- Wei-Bin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Khosh-Fetrat M, Kosha F, Ansari-Moghaddam A, Guest PC, Vahedian-Azimi A, Barreto GE, Sahebkar A. Determining the value of early measurement of interleukin-10 in predicting the absence of brain lesions in CT scans of patients with mild traumatic brain injury. J Neurol Sci 2023; 446:120563. [PMID: 36701890 DOI: 10.1016/j.jns.2023.120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Blood-based biomarkers were recently proposed as predictors of traumatic brain injury (TBI) outcomes. This would be a critical step forward since the majority of TBI events are mild and structural brain damage in this group may be missed by current brain imaging methods. We sought to determine the performance of early measurement of interleukin-10 (IL-10) to distinguish computed tomography (CT)-positive from negative patients with mild TBI. We designed a single-center prospective observational study, which enrolled consecutive patients classed with mild TBI according to Glasgow Coma Scale [GCS] scores and appearance of at least one clinical symptom. Serum IL-10 levels were measured <3 h post hospital admission. The performance of IL-10 levels in correctly classifying patients was evaluated. IL-10 levels were significantly higher in the group with positive CT scans (p < 0.001). With sensitivity set at 100%, the specificity of IL-10 was only 38.1%. However, the specificities of IL-10 for prediction of negative and positive cases increased to 59% and 49%, respectively, when both parameters were assessed within 90 min of admission. For mild TBI patients between 36 and 66 years, classification performance increased significantly at the 100% sensitivity level with a specificity of 93%. Our results suggest that IL-10 may be an easily accessible clinically useful diagnostic biomarker that can distinguish between mild TBI patients with and without structural brain damage with higher effectiveness when lower times of blood sampling are employed and patients are between 36 and 66 years of age.
Collapse
Affiliation(s)
- Masoum Khosh-Fetrat
- Department of Anesthesiology and Critical Care, Khatamolanbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Kosha
- Department of Anesthesiology and Critical Care, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Paul C Guest
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Supraja P, Tripathy S, Krishna Vanjari SR, Singh SG. Label-free, ultrasensitive and rapid detection of FDA-approved TBI specific UCHL1 biomarker in plasma using MWCNT-PPY nanocomposite as bio-electrical transducer: A step closer to point-of-care diagnosis of TBI. Biosens Bioelectron 2022; 216:114631. [PMID: 35973277 DOI: 10.1016/j.bios.2022.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
Traumatic Brain Injury (TBI), a major cause of mortality and neurological disability affecting people of all ages worldwide, remains a diagnostic and therapeutic challenge to date. Rapid, ultra-sensitive, selective, and wide-range detection of TBI biomarkers in easily accessible body fluids is an unmet clinical need. Considering this, in this work, we report the design and development of a facile, label-free, highly stable and sensitive, chemi-impedance-based sensing platform for rapid and wide range detection of Ubiquitin-carboxy terminal hydrolase L1 (UCHL1: FDA-approved TBI specific plasma biomarker), using carboxylic functionalized MWCNTs embedded polypyrrole (PPY) nanocomposites (PPY/f-MWCNT). The said nanocomposites were synthesized using chemical oxidative polymerization method. Herein, the functionalized MWCNTs are used as conducting fillers so as to increase the polymer's dielectric constant according to the micro-capacitor model, thereby augmenting both DC electrical conductivity and AC dielectric property of the nanocomposite. The proposed immunosensing platform comprises of PPY/f-MWCNT modified interdigitated microelectrode (IDμEs) array, on which anti-UCHL1-antibodies are immobilized using suitable covalent chemistry. The AC electrical characterization of the nanocomposite modified IDμEs, with and without the antibodies, was performed through generic capacitance vs. frequency (C-F, 1 KHz - 1 MHz) and capacitance vs. applied bias (C-V, 0.1 V-1 V) measurements, using an Agilent B1500A parametric analyzer. The binding event of UCHL1 peptides to anti-UCHL1-antibodies was transduced in terms of normalised changes in parallel capacitance, via the C-F analysis. Further, we have tested the detection efficiency of the said immunoassay against UCHL1 spiked human plasma samples in the concentration range 10 fg/mL - 1 μg/mL. The proposed sensing platform detected UCHL1 in spiked-plasma samples linearly in the range of 10 fg/mL - 1 ng/mL with a sensitivity and LoD of 4.22 ((ΔC/C0)/ng.mL-1)/cm2 and 0.363 fg/mL, respectively. Further, it showed excellent stability (30 weeks), repeatability, reproducibility, selectivity and interference-resistance. The proposed approach is label-free, and if desired, can be used in conjunction with DC measurements, for biosensing applications.
Collapse
Affiliation(s)
- Patta Supraja
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| | - Suryasnata Tripathy
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Surat, 395007, India.
| | | | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| |
Collapse
|
4
|
Salahandish R, Haghayegh F, Khetani S, Hassani M, Nezhad AS. Immuno-affinity Potent Strip with Pre-Embedded Intermixed PEDOT:PSS Conductive Polymers and Graphene Nanosheets for Bio-Ready Electrochemical Biosensing of Central Nervous System Injury Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28651-28662. [PMID: 35704794 DOI: 10.1021/acsami.2c07322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Future point-of-care (PoC) and wearable electrochemical biosensors explore new technology solutions to eliminate the need for multistep electrode modification and functionalization, overcome the limited reproducibility, and automate the sensing steps. In this work, a new screen-printed immuno-biosensor strip is engineered and characterized using a hybrid graphene nanosheet intermixed with the conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymers, all embedded within the base carbon matrix (GiPEC) of the screen-printing ink. This intermixed nanocomposite ink is chemically designed for self-containing the "carboxyl" functional groups as the most specific chemical moiety for protein immobilization on the electrodes. The GiPEC ink enables capturing the target antibodies on the electrode without any need for extra surface preparation. As a proof of concept, the performance of the non-functionalized ready-to-immobilize strips was assessed for the detection of glial fibrillary acidic protein (GFAP) as a known central nervous system injury blood biomarker. This immuno-biosensor exhibits the limit of detection of 281.7 fg mL-1 (3 signal-to-noise ratio) and the sensitivity of 322.6 Ω mL pg-1 mm-2 within the clinically relevant linear detection range from 1 pg mL-1 to 10 ng mL-1. To showcase its potential PoC application, the bio-ready strip is embedded inside a capillary microfluidic device and automates electrochemical quantification of GFAP spiked in phosphate-buffered saline and the human serum. This new electrochemical biosensing platform can be further adapted for the detection of various protein biomarkers with the application in realizing on-chip immunoassays.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Fatemeh Haghayegh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
5
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Khetani S, Singh A, Besler B, Butterworth S, Lijnse T, Loughery K, Smith K, Hosseini E, Narang R, Karan K, Debert C, Sen A, Murari K, Nezhad AS. μDrop: Multi-analyte portable electrochemical-sensing device for blood-based detection of cleaved tau and neuron filament light in traumatic brain injury patients. Biosens Bioelectron 2021; 178:113033. [PMID: 33517230 DOI: 10.1016/j.bios.2021.113033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Over 27 million individuals are affected every year worldwide with central nervous system (CNS) injuries. These injuries include but are not limited to traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries remain a significant public health concern which demands reliable tools for rapid, on-sight, on-field, and point-of-care diagnostic (POC) solutions. To address these challenges, we developed a low-cost, open-source, hand-held, portable, and POC detection technology, termed as MicroDrop (μDrop), which can simultaneously detect up to eight target biomolecules and display results in both analog and digital formats. The data acquired is stored wirelessly in a cloud server for further investigation and statistical analysis. Multiplexing capability of μDrop and immuno-biosensors detects and quantifies Cleaved-Tau Protein (C-Tau) and Neuron-Filament (NFL) proteins in the blood of TBI patients. Immuno-biosensors rapidly sense the two target proteins in less than 30 min, with μDrop and a conventional potentiostat. C-Tau and NFL were selectively detected with μDrop within the dynamic range of 10 pg/mL - 100 ng/mL and the sensitivity range of 47 μA/pg mm2 - 65 μA/pg mm2. Comparing the biosensing performance with enzyme-linked immunosorbent assays (ELISA) shows that the immuno-biosensors combined with μDrop could successfully differentiate between clinical controls and injured patients.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Anupriya Singh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Brendon Besler
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savitri Butterworth
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Thomas Lijnse
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kenneth Loughery
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Katrin Smith
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Ehsan Hosseini
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Rakesh Narang
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Chantel Debert
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, Foothills Medical Centre, University of Calgary, Calgary, Alberta, T2H 2T9, Canada
| | - Arindom Sen
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kartikeya Murari
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Amir Sanati- Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
7
|
Recent advances in sensitivity enhancement for lateral flow assay. Mikrochim Acta 2021; 188:379. [PMID: 34647157 PMCID: PMC8513549 DOI: 10.1007/s00604-021-05037-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/25/2021] [Indexed: 12/04/2022]
Abstract
Conventional lateral flow assay (LFA) is typically performed by observing the color changes in the test lines by naked eyes, which achieves considerable commercial success and has a significant impact on the fields of food safety, environment monitoring, disease diagnosis, and other applications. However, this qualitative detection method is not very suitable for low levels of disease biomarkers' detection. Although many nanomaterials are used as new labels for LFA, additional readers limit their application to some extent. Fortunately, a lot of work has been done for improving the sensitivity of LFA. In this review, currently reported LFA sensitivity enhancement methods with an objective evaluation are summarized, such as sample pretreatment, the change of flow rate, and label evolution, and future development direction and challenges of LFAs are discussed.
Collapse
|
8
|
Lagerstedt L, Azurmendi L, Tenovuo O, Katila AJ, Takala RSK, Blennow K, Newcombe VFJ, Maanpää HR, Tallus J, Hossain I, van Gils M, Menon DK, Hutchinson PJ, Zetterberg H, Posti JP, Sanchez JC. Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury. Front Neurol 2020; 11:376. [PMID: 32581990 PMCID: PMC7280446 DOI: 10.3389/fneur.2020.00376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim: To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100β, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods: Blood samples from patients with acute TBI (all severities) were collected <24 h post trauma. The outcome was measured >6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE≥5)/unfavorable outcome (GOSE ≤ 4) and complete (GOSE = 8)/incomplete (GOSE ≤ 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results: When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion: Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100β and clinical parameters improves outcome prediction models in TBI.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leire Azurmendi
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Iftakher Hossain
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Mark van Gils
- Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland Ltd, Tampere, Finland
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,National Institute for Health Research, Cambridge BRC, Cambridge, United Kingdom.,Royal College of Surgeons of England, London, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Jussi P Posti
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Zakariaei Z. Interleukin-10 may have diagnostic value in identifying mild traumatic brain injury. Brain Inj 2020; 34:591-592. [PMID: 32050800 DOI: 10.1080/02699052.2020.1725128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zakaria Zakariaei
- Clinical Toxicology Fellowship, Department of Emergency Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Khetani S, Kollath VO, Eastick E, Debert C, Sen A, Karan K, Sanati-Nezhad A. Single-step functionalization of poly-catecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1 (UCHL-1) in spinal cord injury. Biosens Bioelectron 2019; 145:111715. [DOI: 10.1016/j.bios.2019.111715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
|
11
|
Kornguth S, Rutledge N. Integration of Biomarkers Into a Signature Profile of Persistent Traumatic Brain Injury Involving Autoimmune Processes Following Water Hammer Injury From Repetitive Head Impacts. Biomark Insights 2018; 13:1177271918808216. [PMID: 30397383 PMCID: PMC6207974 DOI: 10.1177/1177271918808216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To assemble an algorithm that will describe a "Signature" predictive of an individual's vulnerability to persistent traumatic brain injury (TBI). SUBJECTS AND METHODS Studies of athletes and warriors who are subjected to repeated head impacts with rapid acceleration/deceleration forces are used to assist in the diagnosis and management of TBI-affected individuals. Data from multiple areas, including clinical, anatomical, magnetic resonance imaging, cognitive function, and biochemical analyses, are integrated to provide a Signature of persistent TBI. RESULTS Studies to date indicate that susceptibility to TBI results from an interaction between host genetic and structural vulnerability factors and force and torque of impact on the head and torso. The host factors include molecular markers affecting immune and inflammatory responses to stress/insult as well as anatomical features such as the degree of transcortical fiber projections and vascular malformations. The host response to forceful impact includes the release of intracellular neural proteins and nucleic acids into the cerebrospinal fluid and vascular compartment as well as mobilization of cytokines and macrophages into the central nervous system with subsequent activation of microglia and inflammatory responses including autoimmune processes. Maximum impact to the base of the sulci via a "water hammer effect" is consistent with the localization of microvascular and inflammatory responses in the affected brain region. CONCLUSIONS An assessment of an individuals' predisposition to persistent TBI with delayed cognitive deficits and behavioral changes requires an understanding of host vulnerability (genetic factors and brain structure) and external stressors (force and torque of impact as well as repetitive head injury and time interval between impacts). An algorithm that has utility in predicting vulnerability to TBI will include qualitative and quantitative measures of the host factors weighted against post impact markers of neural injury. Implementation of the resulting "Signature" of vulnerability at early stages of injury will help inform athletes and warriors, along with commanders and management, of the risk/benefit approaches that will markedly diminish health care costs to the nation and suffering to this population. This report attempts to define a strategy to create such an algorithm.
Collapse
Affiliation(s)
- Steven Kornguth
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Neal Rutledge
- Department of Psychology, The University of Texas at Austin and Austin Radiological Association, Austin, TX, USA
| |
Collapse
|
12
|
Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2018; 13:e0200394. [PMID: 29985933 PMCID: PMC6037378 DOI: 10.1371/journal.pone.0200394] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance. The present study evaluated 13 proteins individually-H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10-for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1. Four proteins-H-FABP, IL-10, S100B and GFAP-showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23-40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36-55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43-61) with 100% sensitivity. These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.
Collapse
|
13
|
Khetani S, Ozhukil Kollath V, Kundra V, Nguyen MD, Debert C, Sen A, Karan K, Sanati-Nezhad A. Polyethylenimine Modified Graphene-Oxide Electrochemical Immunosensor for the Detection of Glial Fibrillary Acidic Protein in Central Nervous System Injury. ACS Sens 2018. [PMID: 29516727 DOI: 10.1021/acssensors.8b00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is as an intermediate filament protein expressed by certain cells in the central nervous system (CNS). GFAP has been recognized as a reliable biomarker of CNS injury. However, due to the absence of rapid and easy-to-use assays for the detection of CNS injury biomarkers, measuring GFAP levels to identify CNS injury has not attained widespread clinical implementation. In the present work, we developed a polyethylenimine (PEI) coated graphene screen-printed electrode and used it for highly sensitive immunosensing of GFAP. Covalent binding of GFAP antibody to the PEI-modified electrode surface along with electrochemical impedance spectroscopy was used for detecting the change in the electrical conductivity of the electrodes. A highly linear response was recorded for various GFAP concentrations. Quantitative, selective, and label-free detection was achieved in the dynamic range of 1 pg mL-1 to 100 ng mL-1 for GFAP spiked in phosphate buffer saline, artificial cerebrospinal fluid, and human blood serum. The performance of the immunosensor was further validated and correlated by testing samples with the commercially available enzyme-linked immunosorbent assay method. This functionalized electrode could be used clinically for rapid detection and monitoring of CNS injury.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Varun Kundra
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minh Dang Nguyen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chantel Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, Foothills Medical Centre, University of Calgary, Calgary, Alberta T2H 2T9, Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Lagerstedt L, Egea-Guerrero JJ, Rodríguez-Rodríguez A, Bustamante A, Montaner J, El Rahal A, Andereggen E, Rinaldi L, Sarrafzadeh A, Schaller K, Sanchez JC. Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild traumatic brain injury. PLoS One 2018; 13:e0193278. [PMID: 29466474 PMCID: PMC5821397 DOI: 10.1371/journal.pone.0193278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury is a common event where 70%-90% will be classified as mild TBI (mTBI). Among these, only 10% will have a brain lesion visible via CT scan. A triage biomarker would help clinicians to identify patients with mTBI who are at risk of developing a brain lesion and require a CT scan. The brain cells damaged by the shearing, tearing and stretching of a TBI event set off inflammation cascades. These cause altered concentrations of a high number of both pro-inflammatory and anti-inflammatory proteins. This study aimed to discover a novel diagnostic biomarker of mTBI by investigating a broad panel of inflammation biomarkers and their capacity to correctly identify CT-positive and CT-negative patients. Patients enrolled in this study had been diagnosed with mTBI, had a GCS score of 15 and suffered from at least one clinical symptom. There were nine patients in the discovery group, 45 for verification, and 133 mTBI patients from two different European sites in the validation cohort. All patients gave blood samples, underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. The ability of each protein to classify patients was evaluated with sensitivity set at 100%. Three of the 92 inflammation proteins screened-MCP-1, MIP-1alpha and IL-10 -were further investigated in the verification group, and at 100% sensitivity their specificities reached 7%, 0% and 31%, respectively. IL-10 was validated on a larger cohort in comparison to the most studied mTBI diagnostic triage protein to date, S100B. Levels of both proteins were significantly higher in CT-positive than in CT-negative patients (p < 0.001). S100B's specificity at 100% sensitivity was 18% (95% CI 10.8-25.2), whereas IL-10 reached a specificity of 27% (95% CI 18.9-35.1). These results showed that IL-10 might be an interesting and clinically useful diagnostic tool, capable of differentiating between CT-positive and CT-negative mTBI patients.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Programme, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Amir El Rahal
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Elisabeth Andereggen
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lara Rinaldi
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159:209-225. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
Abstract
Background In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein “biomarker” of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. Results S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. Conclusion Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein "biomarker" of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. RESULTS S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. CONCLUSION Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Fluid Biomarkers of Traumatic Brain Injury and Intended Context of Use. Diagnostics (Basel) 2016; 6:diagnostics6040037. [PMID: 27763536 PMCID: PMC5192512 DOI: 10.3390/diagnostics6040037] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability around the world. The lack of validated biomarkers for TBI is a major impediment to developing effective therapies and improving clinical practice, as well as stimulating much work in this area. In this review, we focus on different settings of TBI management where blood or cerebrospinal fluid (CSF) biomarkers could be utilized for predicting clinically-relevant consequences and guiding management decisions. Requirements that the biomarker must fulfill differ based on the intended context of use (CoU). Specifically, we focus on fluid biomarkers in order to: (1) identify patients who may require acute neuroimaging (cranial computerized tomography (CT) or magnetic resonance imaging (MRI); (2) select patients at risk for secondary brain injury processes; (3) aid in counseling patients about their symptoms at discharge; (4) identify patients at risk for developing postconcussive syndrome (PCS), posttraumatic epilepsy (PTE) or chronic traumatic encephalopathy (CTE); (5) predict outcomes with respect to poor or good recovery; (6) inform counseling as to return to work (RTW) or to play. Despite significant advances already made from biomarker-based studies of TBI, there is an immediate need for further large-scale studies focused on identifying and innovating sensitive and reliable TBI biomarkers. These studies should be designed with the intended CoU in mind.
Collapse
|
18
|
Cummins BM, Ligler FS, Walker GM. Point-of-care diagnostics for niche applications. Biotechnol Adv 2016; 34:161-76. [PMID: 26837054 PMCID: PMC4833668 DOI: 10.1016/j.biotechadv.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Point-of-care or point-of-use diagnostics are analytical devices that provide clinically relevant information without the need for a core clinical laboratory. In this review we define point-of-care diagnostics as portable versions of assays performed in a traditional clinical chemistry laboratory. This review discusses five areas relevant to human and animal health where increased attention could produce significant impact: veterinary medicine, space travel, sports medicine, emergency medicine, and operating room efficiency. For each of these areas, clinical need, available commercial products, and ongoing research into new devices are highlighted.
Collapse
Affiliation(s)
- Brian M Cummins
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Glenn M Walker
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Maneshi MM, Sachs F, Hua SZ. A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury. J Neurotrauma 2015; 32:1020-9. [PMID: 25442327 DOI: 10.1089/neu.2014.3677] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) refers to brain damage resulting from external mechanical force, such as a blast or crash. Our current understanding of TBI is derived mainly from in vivo studies that show measurable biological effects on neurons sampled after TBI. Little is known about the early responses of brain cells during stimuli and which features of the stimulus are most critical to cell injury. We generated defined shear stress in a microfluidic chamber using a fast pressure servo and examined the intracellular Ca(2+) levels in cultured adult astrocytes. Shear stress increased intracellular Ca(2+) depending on the magnitude, duration, and rise time of the stimulus. Square pulses with a fast rise time (∼2 ms) caused transient increases in intracellular Ca(2+), but when the rise time was extended to 20 ms, the response was much less. The threshold for a response is a matrix of multiple parameters. Cells can integrate the effect of shear force from repeated challenges: A pulse train of 10 narrow pulses (11.5 dyn/cm(2) and 10 ms wide) resulted in a 4-fold increase in Ca(2+) relative to a single pulse of the same amplitude 100 ms wide. The Ca(2+) increase was eliminated in Ca(2+)-free media, but was observed after depleting the intracellular Ca(2+) stores with thapsigargin suggesting the need for a Ca(2+) influx. The Ca(2+) influx was inhibited by extracellular Gd(3+), a nonspecific inhibitor of mechanosensitive ion channels, but it was not affected by the more specific inhibitor, GsMTx4. The voltage-gated channel blockers, nifedipine, diltiazem, and verapamil, were also ineffective. The data show that the mechanically induced Ca(2+) influx commonly associated with neuron models for TBI is also present in astrocytes, and there is a viscoelastic/plastic coupling of shear stress to the Ca(2+) influx. The site of Ca(2+) influx has yet to be determined.
Collapse
Affiliation(s)
| | - Frederick Sachs
- 2 Department of Physiology and Biophysics, SUNY-Buffalo , Buffalo, New York
| | - Susan Z Hua
- 1 Department of Mechanical and Aerospace Engineering, SUNY-Buffalo , Buffalo, New York.,2 Department of Physiology and Biophysics, SUNY-Buffalo , Buffalo, New York
| |
Collapse
|
20
|
Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: Evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 2014; 47:876-88. [DOI: 10.1016/j.clinbiochem.2014.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
|
21
|
Shen S, Loo RRO, Wanner IB, Loo JA. Addressing the needs of traumatic brain injury with clinical proteomics. Clin Proteomics 2014; 11:11. [PMID: 24678615 PMCID: PMC3976360 DOI: 10.1186/1559-0275-11-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Background Neurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use. Content We discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field. Summary Many studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such ‘long lists’ is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
23
|
Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm. Transl Stroke Res 2013; 5:385-93. [PMID: 24323722 DOI: 10.1007/s12975-013-0300-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Due to increased survival rates among soldiers exposed to explosive blasts, blast-induced traumatic brain injury (bTBI) has become much more prevalent in recent years. Cerebral vasospasm (CVS) is a common manifestation of brain injury whose incidence is significantly increased in bTBI. CVS is characterized by initial vascular smooth muscle cell (VSMC) hypercontractility, followed by prolonged vessel remodeling and lumen occlusion, and is traditionally associated with subarachnoid hemorrhage (SAH), but recent results suggest that mechanical injury during bTBI can cause mechanotransduced VSMC hypercontractility and phenotype switching necessary for CVS development, even in the absence of SAH. Here, we review the mechanisms by which mechanical stimulation and SAH can synergistically drive CVS progression, complicating treatment options in bTBI patients.
Collapse
|
24
|
Arya SK, Pui TS, Wong CC, Kumar S, Rahman ARA. Effects of the electrode size and modification protocol on a label-free electrochemical biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6770-6777. [PMID: 23651210 DOI: 10.1021/la401109r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present work, the effect of a surface modification protocol along with the electrode size has been investigated for developing an efficient, label-free electrochemical biosensing method for diagnosis of traumatic brain injury (TBI) biomarkers. A microdisk electrode array (MDEA) and a macroelectrode with a comb structure (MECS) were modified with an anti-GFAP (GFAP = glial fibrillary acidic protein) antibody using two protocols for optimum and label-free detection of GFAP, a promising acute-phase TBI biomarker. For the MDEA, an array of six microdisks with a 100 μm diameter and, for the MECS, a 3.2 mm × 5.5 mm electrode 5 μm wide with 10 μm spaced comb fingers were modified using an optimized protocol for dithiobis(succinimidyl propionate) (DSP) self-assembled monolayer formation. Anti-GFAP was covalently bound, and the remaining free DSP groups were blocked using ethanolamine (Ea). Sensors were exposed to solutions with different GFAP concentrations, and a label-free electrochemical impedance spectroscopy (EIS) technique was used to determine the concentration. EIS results confirmed that both types of Ea/anti-GFAP/DSP/Au electrodes modified with an optimized DSP-based protocol can accurately detect GFAP in the range of 1 pg mL(-1) to 100 ng mL(-1) with a detection limit of 1 pg mL(-1). However, the cross-use of the MDEA protocol on the MECS and vice versa resulted in very low sensitivity or poor signal resolution, underscoring the importance of proper matching of the electrode size and type and the surface modification protocol.
Collapse
Affiliation(s)
- Sunil K Arya
- Bioelectronics Programme, Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore Science Park II, Singapore.
| | | | | | | | | |
Collapse
|