1
|
Xiong M, Wang Y, Lu S, Lubanga N, Li T, Li Z, He B, Li Y. Space-coded microchip for multiplexed respiratory virus detection via CRISPR-Cas12a and RPA. Talanta 2025; 291:127815. [PMID: 40024134 DOI: 10.1016/j.talanta.2025.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Multiple infections of respiratory viruses are common in patients with clinical respiratory diseases, but current detection methods still have problems such as complex equipment and long detection time. Rapid, low-cost, and on-site detection of human respiratory viruses is crucial for both clinical diagnosis and population screening. In this research, we created a space-coded microfluidic chip (SC-Chip) for the recognition of nine respiratory viruses: influenza A virus, influenza B virus, severe acute respiratory syndrome coronavirus 2, human coronavirus OC43, human coronavirus NL63, human coronavirus HKU1, human respiratory syncytial virus, human parainfluenza virus, and human metapneumovirus. For the first time, a comprehensive sequence comparison among these viruses was performed to design the recombinase polymerase amplification (RPA) primers and Cas12a-crRNAs. The SC-Chip partitions samples amplified by RPA into spatially coded wells preloaded with CRISPR-Cas12a detection reagents, enabling the identification of all nine viral targets in a single test using a single fluorescence probe. The chip-based assay displays 9 respiratory viruses in less than 40 min with a minimum detection limit at a concentration of 10-18 M (∼1 copy/reaction). Additionally, the efficacy of the method was assessed through its application to 35 clinical patient samples identified as being at risk for respiratory virus infection, yielding a sensitivity of 90 % and a specificity of 100 %. In summary, this space-coded microfluidic CRISPR system offers several advantages, including ease of operation, cost-effectiveness, and rapid data acquisition, thereby holding great potential for multiplexed detection of nucleic acid targets in a clinical setting.
Collapse
Affiliation(s)
- Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yao Wang
- Institute of Pathogen and Immunity, Wuhan Centers for Disease Prevention and Control, Wuhan, 430024, China
| | - Shuhan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Nasifu Lubanga
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Biology, Muni University, p.o box 725, Arua, Uganda
| | - Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhihao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Ying Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
2
|
Hu F, Zhang Y, Yang Y, Peng L, Cui S, Ma Q, Wang F, Wang X. A rapid and ultrasensitive RPA-assisted CRISPR-Cas12a/Cas13a nucleic acid diagnostic platform with a smartphone-based portable device. Biosens Bioelectron 2025; 280:117428. [PMID: 40179699 DOI: 10.1016/j.bios.2025.117428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The spread of infectious diseases can be controlled by early identification of the source of infection and timely diagnosis to stop transmission. Real-time fluorescence quantitative polymerase chain reaction (PCR) is the current gold standard for pathogen diagnosis, with high detection sensitivity and accuracy. However, due to the need for specialized equipment, laboratories, and personnel, it is difficult to achieve rapid and immediate diagnosis during large-scale infectious disease outbreaks. Herein, an optimized CRISPR-based nucleic acid detection method was developed that reduces the CRISPR detection time to 15 min while maintaining high sensitivity. By using nucleic acid extraction-free and lyophilization techniques, the 'sample-in-result-out' detection of the two target genes of SARS-CoV-2, the human internal reference gene, and the negative quality control sample can be completed in 20 min, with a sensitivity of 0.5 copies/μL. Additionally, to facilitate the application, a smartphone-based reverse transcription-recombinase polymerase amplification (RT-RPA)-assisted CRISPR-rapid, portable nucleic acid detection device was developed, integrating functions such as heating, centrifugation, mixing, optical detection and result output. Process control, output, and uploading of detection results were conducted through smartphones. The device is not dependent on a power supply and can perform on-site rapid virus detection in resource-limited settings. Real-time uploading of results helps to rapidly implement epidemic prevention and control measures, providing an innovative means of detection, control, and prevention of virus-based infectious diseases. This important work provides a new and effective tool to manage potential future outbreaks of infectious diseases.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Yunyun Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yue Yang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lixin Peng
- Windermere Preparatory School, Florida, 34786, United States
| | - Shuhui Cui
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qing Ma
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fangning Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xincheng Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
3
|
Zhao L, Zhao Z, Li N, Wang X. The nucleic acid detection using CRISPR/Cas biosensing system with micro-nano modality for point-of-care applications. Talanta 2025; 286:127457. [PMID: 39724853 DOI: 10.1016/j.talanta.2024.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based diagnostics offer a promising alternative for nucleic acid detection. These methods provide gene sequence-specific targeting, multiplexing capability, rapid result disclosure, and ease of operation, making them suitable for point-of-care (POC) applications. CRISPR-Cas-based nucleic acid detection leverages the intrinsic gene-editing capabilities of CRISPR systems to detect specific DNA or RNA sequences with high precision, ensuring high specificity in identifying pathogens. When integrated with micro- and nano-technologies, CRISPR-based diagnostics gain additional benefits, including automated microfluidic processes, enhanced multiplexed detection, improved sensitivity through nanoparticle integration, and combined detection strategies. In this review, we analyze the motivations for tailoring the CRISPR-Cas system with microfluidic formats or nanoscale materials for nucleic acid biosensing and detection. We discuss and categorize current achievements in such systems, highlighting their differences, commonalities, and opportunities for addressing challenges, particularly for POC diagnostics. Micro- and nano-technologies can significantly enhance the practical utility of the CRISPR-Cas system, enabling more comprehensive diagnostic and surveillance capabilities. By integrating these technologies, CRISPR-based diagnostics can achieve higher levels of automation, sensitivity, and multiplexing, making them invaluable tools in the global effort to diagnose and control infectious diseases.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Ning Li
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
4
|
Liu X, Yang D, Liu B, Tang D. Progress in Signal Amplification and Microstructure Manufacturing for Photoelectrochemical Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:383-405. [PMID: 40372815 DOI: 10.1146/annurev-anchem-070524-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Photoelectrochemical (PEC) sensing based on chemical or biological recognition has received a tremendous amount of attention in recent years, providing analytical chemists a plethora of opportunities. However, emerging techniques and unknown processes in this field remain unexplored. We summarize the recently reported PEC sensing methods. First, we briefly describe the basic principles and technical characteristics of PEC sensing. Next, we highlight the application of various materials, nucleic acids, and other strategies for amplifying PEC signals. Finally, we discuss the current state of knowledge regarding the realization of miniaturized equipment during PEC sensor manufacturing. Summarizing the technological advances and research breakthroughs in PEC sensing over time can help increase the quality of follow-up research.
Collapse
Affiliation(s)
- Xu Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Di Yang
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, China;
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (Ministry of Education), Department of Chemistry, Fuzhou University, Fuzhou, China;
| |
Collapse
|
5
|
Sun T, He W, Chen X, Shu X, Liu W, Ouyang G. Nanomaterials-Integrated CRISPR/Cas Systems: Expanding the Toolbox for Optical Detection. ACS Sens 2025; 10:2453-2473. [PMID: 40202271 DOI: 10.1021/acssensors.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Nanomaterials-integrated CRISPR/Cas systems have rapidly emerged as powerful next-generation platforms for optical biosensing. These integrated platforms harness the precision of CRISPR/Cas-mediated nucleic acid detection while leveraging the unique properties of nanomaterials to achieve enhanced sensitivity and expanded analytical capabilities, thereby broadening their diagnostic potential. By incorporating a diverse range of nanomaterials, these systems effectively expand the analytical toolbox for optical detection, offering adaptable solutions tailored to various diagnostic challenges. This review provides a comprehensive overview of the nanomaterials successfully integrated into CRISPR/Cas-based optical sensing systems. It examines multiple optical detection modalities, including fluorescence, electrochemiluminescence, colorimetry, and surface-enhanced Raman spectroscopy, highlighting how nanomaterials facilitate signal amplification, enable multiplexing, and support the development of point-of-care applications. Additionally, practical applications of these integrated systems in critical fields such as healthcare diagnostics and environmental monitoring are showcased. While these platforms offer considerable advantages, several real-world challenges such as the complexity of assay workflows, environmental impact of nanomaterials, cost, and regulatory hurdles must be addressed before widespread implementation can be achieved. By identifying these critical obstacles and proposing strategic solutions, we aim to pave the way for the continued advancement and adoption of nanomaterial-integrated CRISPR/Cas optical biosensing technologies.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenfen He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiangmei Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaoying Shu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
6
|
Zhang T, Zhao Y, Zhu C, Zhu X, Zhu X, Qiu Y, Nie Z, Lei C. CRISPR/Cas12a Protein Switch Powered Label-Free Electrochemical Biosensor for Sensitive Viral Protease Detection. Anal Chem 2025; 97:8039-8047. [PMID: 40165508 DOI: 10.1021/acs.analchem.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Viral proteases are critical molecular targets in viral pathogenesis, representing pivotal biomarkers for understanding viral infection mechanisms and developing antiviral therapeutics. This study introduces a label-free electrochemical biosensor that enables sensitive viral protease detection by integrating protease-responsive CRISPR/Cas protein switches (CasPSs) with a hemin aptamer-functionalized electrochemical interface. The biosensor's mechanism relies on viral protease-mediated proteolysis, which leads to the release of active Cas12a proteins from CasPSs and generates amplified electrochemical responses through continuous cleavage of immobilized redox-active hemin/aptamer complexes. This biosensor achieved specific hepatitis C virus NS3/4A protease sensing with femtomolar sensitivity and could be readily expanded to other viral proteases by replacing the CasPS module. The feasibility of this biosensor was demonstrated by monitoring enterovirus 71 3C protease activities in virus-infected cell samples with different viral loads and postinfection times. This study provides a promising strategy for integrating CRISPR biosensing with electrochemical platforms, offering a helpful analytical tool for viral infection monitoring and antiviral drug screening.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yingying Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Cong Zhu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Chen W, Liu L, Cheng L. Conditionally Activated Cross-Linked crRNAs for CRISPR/Cas12a Based Nucleic Acid Detection. ACS Synth Biol 2025; 14:94-100. [PMID: 39670632 DOI: 10.1021/acssynbio.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
CRISPR/Cas systems, particularly CRISPR/Cas12a, have revolutionized nucleic acid detection due to their exceptional specificity and sensitivity. However, CRISPR/Cas12a's cleavage activity can interfere with amplification processes, such as reverse transcription (RT) and isothermal amplification (e.g., RPA), potentially compromising detection sensitivity and accuracy. While modified CRISPR/Cas12a systems employing caging and decaging strategies have been developed to address this, these approaches typically require extensive optimization of photolabile groups and complex assay configurations. Here, we present a universal, photochemically controlled strategy for CRISPR/Cas12a-based detection that overcomes these challenges. Our approach involves cross-linking a polymeric crRNA with a photoresponsive cross-linker, effectively inactivating it during amplification and enabling rapid activation through brief light exposure to cleave the cross-linker and release active crRNA. This method obviates the need for labor-intensive optimizations and modifications, making it highly versatile and suitable for rapid, on-site detection applications. Our strategy demonstrates enhanced versatility and applicability, particularly for the immediate detection of newly emerging or unexpected nucleic acid sequences, supporting applications in pathogen detection, genetic screening, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Balakrishnan A, Mishra SK, Georrge JJ. Insight into Protein Engineering: From In silico Modelling to In vitro Synthesis. Curr Pharm Des 2025; 31:179-202. [PMID: 39354773 DOI: 10.2174/0113816128349577240927071706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
Protein engineering alters the polypeptide chain to obtain a novel protein with improved functional properties. This field constantly evolves with advanced in silico tools and techniques to design novel proteins and peptides. Rational incorporating mutations, unnatural amino acids, and post-translational modifications increases the applications of engineered proteins and peptides. It aids in developing drugs with maximum efficacy and minimum side effects. Currently, the engineering of peptides is gaining attention due to their high stability, binding specificity, less immunogenic, and reduced toxicity properties. Engineered peptides are potent candidates for drug development due to their high specificity and low cost of production compared with other biologics, including proteins and antibodies. Therefore, understanding the current perception of designing and engineering peptides with the help of currently available in silico tools is crucial. This review extensively studies various in silico tools available for protein engineering in the prospect of designing peptides as therapeutics, followed by in vitro aspects. Moreover, a discussion on the chemical synthesis and purification of peptides, a case study, and challenges are also incorporated.
Collapse
Affiliation(s)
- Anagha Balakrishnan
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| | - Saurav K Mishra
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| |
Collapse
|
9
|
Rasool HMH, Chen Q, Gong X, Zhou J. CRISPR/Cas system and its application in the diagnosis of animal infectious diseases. FASEB J 2024; 38:e70252. [PMID: 39726403 PMCID: PMC11671863 DOI: 10.1096/fj.202401569r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Infectious diseases are a serious threat to the existence of animals and humans' life. In the 21st century, the emergence and re-emergence of several zoonotic and non-zoonotic global pandemic diseases of socio-economic importance has affected billions of humans and animals. The need for expensive equipment and laboratories, non-availability of on-site testing abilities, with time-consuming and low sensitivity and specificity issues of currently available diagnostic techniques to identify these pathogenic micro-organisms on a large scale highlighted the need for developing cheap, portable environment friendly diagnostic methods. In recent years, these issues have been addressed by clustered regularly interspaced palindromic repeats (CRISPR)-based diagnostic platforms that have transformed the molecular diagnostic field due to their outstanding ultra-sensitive nucleic acid detecting capabilities. In this study, we highlight the types, potential of different Cas proteins, and amplification systems. We also illuminate the application of currently available CRISPR integrated setups on the diagnosis of infectious diseases, majorly in food-producing animals (pigs, ruminants, poultry, and aquaculture), domestic pets (dogs and cats), and diseases of zoonotic importance. We conclude the challenges and future perspectives of using these systems to rapidly diagnose and treat other infectious diseases and also develop control strategies to prevent the spread of pathogenic organisms.
Collapse
Affiliation(s)
- Hafiz Muhammad Hamza Rasool
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| |
Collapse
|
10
|
Razavi Z, Soltani M, Souri M, Pazoki-Toroudi H. CRISPR-Driven Biosensors: A New Frontier in Rapid and Accurate Disease Detection. Crit Rev Anal Chem 2024:1-25. [PMID: 39288095 DOI: 10.1080/10408347.2024.2400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This comprehensive review delves into the advancements and challenges in biosensing, with a strong emphasis on the transformative potential of CRISPR technology for early and rapid detection of infectious diseases. It underscores the versatility of CRISPR/Cas systems, highlighting their ability to detect both nucleic acids and non-nucleic acid targets, and their seamless integration with isothermal amplification techniques. The review provides a thorough examination of the latest developments in CRISPR-based biosensors, detailing the unique properties of CRISPR systems, such as their high specificity and programmability, which make them particularly effective for detecting disease-associated nucleic acids. While the review focuses on nucleic acid detection due to its critical role in diagnosing infectious diseases, it also explores the broader applications of CRISPR technology in detecting non-nucleic acid targets, thereby acknowledging the technology's broader potential. Additionally, the review identifies existing challenges, such as the need for improved signal amplification and real-world applicability, and offers future perspectives aimed at overcoming these hurdles. The ultimate goal is to advance the development of highly sensitive and specific CRISPR-based biosensors that can be used widely for improving human health, particularly in point-of-care settings and resource-limited environments.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
11
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
12
|
Rolando JC, Melkonian AV, Walt DR. The Present and Future Landscapes of Molecular Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:459-474. [PMID: 38360553 DOI: 10.1146/annurev-anchem-061622-015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Justin C Rolando
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Arek V Melkonian
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - David R Walt
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Nie H, Yang X, Zheng S, Hou L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. HORTICULTURAE 2024; 10:641. [DOI: 10.3390/horticulturae10060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable crop with significant economic and nutritional importance. This review paper discusses the recent advancements in gene-based approaches to enhance the quality of tomatoes, particularly focusing on firmness, shelf life, and adaptations to pre- and post-harvest stresses. Utilizing genetic engineering techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9 (CRISPR/Cas9) and Transcription Activator-like Effector Nucleases (TALENs), researchers have made remarkable progress in developing tomatoes with improved traits that address key challenges faced during cultivation, storage, and transportation. We further highlighted the potential of genetic modifications in enhancing tomato firmness, thereby reducing post-harvest losses and improving consumer satisfaction. Furthermore, strategies to extend tomato shelf life through genetic interventions are discussed, emphasizing the importance of maintaining quality and freshness for sustainable food supply chains. Furthermore, the review delves into the ways in which gene-based adaptations can bolster tomatoes against environmental stresses, pests, and diseases, thereby enhancing crop resilience and ensuring stable yields. Emphasizing these crucial facets, this review highlights the essential contribution of genetic advancements in transforming tomato production, elevating quality standards, and promoting the sustainability of tomato cultivation practices.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiu Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
14
|
Cardiff RL, Faulkner I, Beall J, Carothers JM, Zalatan J. CRISPR-Cas tools for simultaneous transcription & translation control in bacteria. Nucleic Acids Res 2024; 52:5406-5419. [PMID: 38613390 PMCID: PMC11109947 DOI: 10.1093/nar/gkae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon. These effects pose a challenge for independently regulating individual genes in multi-gene operons. Here, we use CRISPR-dCas13 to address this challenge. We find dCas13-mediated repression exhibits up to 6-fold lower polar effects compared to dCas9. We then show that we can selectively activate single genes in a synthetic multi-gene operon by coupling dCas9 transcriptional activation of an operon with dCas13 translational repression of individual genes within the operon. We also show that dCas13 and dCas9 can be multiplexed for improved biosynthesis of a medically-relevant human milk oligosaccharide. Taken together, our findings suggest that combining transcriptional and translational control can access effects that are difficult to achieve with either mode independently. These combined tools for gene regulation will expand our abilities to precisely engineer bacteria for biotechnology and perform systematic genetic screens.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
| | - Ian D Faulkner
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Juliana G Beall
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| |
Collapse
|
15
|
Xia Y, Rao R, Xiong M, He B, Zheng B, Jia Y, Li Y, Yang Y. CRISPR-Powered Strategies for Amplification-Free Diagnostics of Infectious Diseases. Anal Chem 2024; 96:8091-8108. [PMID: 38451204 DOI: 10.1021/acs.analchem.3c04363] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Yupiao Xia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiu Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bingxin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
16
|
Wei H, Liu L, Jiang H, Chen H, Wang Y, Han Y, Rong Z, Wang S. CRISPR/Cas13a-based single-nucleotide polymorphism detection for reliable determination of ABO blood group genotypes. Analyst 2024; 149:2161-2169. [PMID: 38441624 DOI: 10.1039/d3an02248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The ABO blood group plays an important role in blood transfusion, linkage analysis, individual identification, etc. Serologic methods of blood typing are gold standards for the time being, which require stable typing antisera and fresh blood samples and are labor intensive. At present, reliable determination of ABO blood group genotypes based on single-nucleotide polymorphisms (SNPs) among A, B, and O alleles remains necessary. Thus, in this work, CRISPR/Cas13a-mediated genotyping for the ABO blood group by detecting SNPs between different alleles was proposed. The ABO*O.01.01(c.261delG) allele (G for the A/B allele and del for the O allele) and ABO*B.01(c.796C > A) allele (C for the A/O allele and A for the B allele) were selected to determine the six genotypes (AA, AO, BB, BO, OO, and AB) of the ABO blood group. Multiplex PCR was adapted to simultaneously amplify the two loci. CRISPR/Cas13a was then used to specifically differentiate ABO*O.01.01(c.261delG) and ABO*B.01(c.796C > A) of A, B, and O alleles. Highly accurate determination of different genotypes was achieved with a limit of detection of 50 pg per reaction within 60 min. The reliability of this method was further validated based on its applicability in detecting buccal swab samples with six genotypes. The results were compared with those of serological and sequencing methods, with 100% accuracy. Thus, the CRISPR/Cas13a-mediated assay shows great application potential in the reliable identification of ABO blood group genotypes in a wide range of samples, eliminating the need to collect fresh blood samples in the traditional method.
Collapse
Affiliation(s)
- Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Liyan Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Hanji Jiang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Hong Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Yunxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Yongjun Han
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China.
| |
Collapse
|
17
|
Li X, Dang Z, Tang W, Zhang H, Shao J, Jiang R, Zhang X, Huang F. Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a. BIOSENSORS 2024; 14:145. [PMID: 38534252 DOI: 10.3390/bios14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.
Collapse
Affiliation(s)
- Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jianwei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui Jiang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
18
|
Kasputis T, He Y, Ci Q, Chen J. On-Site Fluorescent Detection of Sepsis-Inducing Bacteria using a Graphene-Oxide CRISPR-Cas12a (GO-CRISPR) System. Anal Chem 2024; 96:2676-2683. [PMID: 38290431 PMCID: PMC10867801 DOI: 10.1021/acs.analchem.3c05459] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.
Collapse
Affiliation(s)
- Tom Kasputis
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|