1
|
Fonseca WT, Parra Vello T, Lelis GC, Ferreira Deleigo AV, Takahira RK, Martinez DST, de Oliveira RF. Chemical Sensors and Biosensors for Point-of-Care Testing of Pets: Opportunities for Individualized Diagnostics of Companion Animals. ACS Sens 2025. [PMID: 40259889 DOI: 10.1021/acssensors.4c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Point-of-care testing (POCT) is recognized as one of the most disruptive medical technologies for rapid and decentralized diagnostics. Successful commercial examples include portable glucose meters, pregnancy tests, and COVID-19 self-tests. However, compared to advancements in human healthcare, POCT technologies for companion animals (pets) remain significantly underdeveloped. This Review explores the latest advancements in pet POCT and examines the challenges and opportunities in the field for individualized diagnostics of cats and dogs. The most frequent diseases and their respective biomarkers in blood, urine, and saliva are discussed. We examine key strategies for developing the next-generation POCT devices by harnessing the potential of selective (bio)receptors and high-performing transducers such as lateral flow tests and electrochemical (bio)sensors. We also present the most recent research initiatives and the successful commercial pet POCT technologies. We discuss future trends in the field, such the role of biomarker discovery and development of wearable, implantable, and breath sensors. We believe that advancing pet POCT technologies benefits not only animals but also humans and the environment, supporting the One Health approach.
Collapse
Affiliation(s)
- Wilson Tiago Fonseca
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
| | - Tatiana Parra Vello
- Mackenzie Institute for Research in Graphene and Nanotechnologies (MackGraphe), Mackenzie Presbyterian Institute (IPM), 01302-907 São Paulo, Brazil
| | - Gabrielle Coelho Lelis
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 13083-862 Campinas, Brazil
| | - Ana Vitória Ferreira Deleigo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Post-Graduate Program in Materials Science and Technology (POSMAT), São Paulo State University "Júlio de Mesquita Filho" (UNESP), 17033-360 Bauru, Brazil
| | - Regina Kiomi Takahira
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), 18618-687 Botucatu, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
| | - Rafael Furlan de Oliveira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), 13083-862 Campinas, Brazil
- Post-Graduate Program in Materials Science and Technology (POSMAT), São Paulo State University "Júlio de Mesquita Filho" (UNESP), 17033-360 Bauru, Brazil
- Institute of Physics "Gleb Wataghin" (IFGW), University of Campinas (UNICAMP), 13083-859 Campinas, Brazil
| |
Collapse
|
2
|
Wymore Brand M, Souza CK, Gauger P, Arruda B, Vincent Baker AL. Biomarkers associated with vaccine-associated enhanced respiratory disease following influenza A virus infection in swine. Vet Immunol Immunopathol 2024; 273:110787. [PMID: 38815504 PMCID: PMC11201273 DOI: 10.1016/j.vetimm.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Influenza A virus (IAV) is a major pathogen in the swine industry. Whole-inactivated virus (WIV) vaccines in swine are highly effective against homologous viruses but provide limited protection to antigenically divergent viruses and may lead to vaccine-associated enhanced respiratory disease (VAERD) after heterologous infection. Although VAERD is reproducible in laboratory studies, clinical diagnosis is challenging, as it would require both knowledge of prior vaccine history and evidence of severe disease by assessment of pathologic lesions at necropsy following infection with a heterologous virus. The objective of this study was to identify potential biomarkers for VAERD for antemortem clinical diagnosis. Naïve pigs were split into two groups, and one group was vaccinated with IAV WIV vaccine. All pigs were then challenged with a heterologous virus to induce VAERD in the vaccinated group and necropsied at 5 days post infection (dpi). Blood was collected on 0, 1, 3, and 5 dpi, and assessed by hematology, plasma chemistry, acute phase proteins, and citrullinated H3 histone (CitH3) assays. Additionally, cytokine and CitH3 levels were assessed in bronchoalveolar lavage fluid (BALF) collected at necropsy. Compared to nonvaccinated challenged pigs, blood collected from vaccinated and challenged (V/C) pigs with VAERD had elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin acute phase proteins, and elevated CitH3. In BALF, the proinflammatory cytokine IL-8 and CitH3 were elevated in V/C pigs. In conclusion, a profile of elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin, and elevated CitH3 may be relevant for a clinical antemortem IAV VAERD diagnosis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA.
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bailey Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| |
Collapse
|
3
|
Rodrigues VD, Borges DGL, Conde MH, de Freitas MG, do Nascimento Ramos CA, de Souza AI, Reckziegel GH, de Castro Rodrigues D, Borges FDA. Biomarkers of gastrointestinal nematodes in beef cattle raised in a tropical area. Parasitol Res 2024; 123:207. [PMID: 38713234 DOI: 10.1007/s00436-024-08228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Biomarkers are specific molecular, histological, or physiological characteristics of normal or pathogenic biological processes and are promising in the diagnosis of gastrointestinal nematodes (GINs). Although some biomarkers have been validated for infection by Ostertagia sp. in cattle raised in temperate regions, there is a lack of information for tropical regions. The aim of this project was to assess potential biomarkers and validate the most promising. In the first study, 36 bovines (Nelore breed) naturally infected by GINs were distributed into two groups: infected (not treated with anthelmintic) and treated (treated with fenbendazole on days 0, 7, 14, 21, 28, 42, and 56). The variables of interest were live weight, fecal egg count, hemogram, serum biochemical markers, phosphorus, gastrin, and pepsinogen. In the second step, pepsinogen was assessed in cattle of the Nelore breed distributed among three groups: infected (not treated with anthelmintic), MOX (treated with moxidectin), and IVM + BZD (treated with ivermectin + albendazole). In the first study, no difference between groups was found for weight, albumin, hematocrit (corpuscular volume [CV]), erythrocytes, or hemoglobin. Negative correlations were found between pepsinogen and both CV and albumin, and albumin was negatively correlated with the percentage of Haemonchus sp. in the fecal culture. Among the biomarkers, only pepsinogen differentiated treated and infected (beginning with the 28th day of the study). In the second study, a reduction in pepsinogen was found after anthelmintic treatment. Therefore, pepsinogen is a promising biomarker of worms in cattle naturally infected by the genera Haemonchus and Cooperia in tropical areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernando de Almeida Borges
- Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
- Laboratório de Doenças Parasitárias, Faculdade de Medicina Veterinária E Zootecnia, Universidade Federal de Mato Grosso Do Sul, Avenida Senador Filinto Müller, Campo Grande, MS, 2443, Brazil.
| |
Collapse
|
4
|
Vilfan M, Lampreht Tratar U, Milevoj N, Nemec Svete A, Čemažar M, Serša G, Tozon N. Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs. Animals (Basel) 2024; 14:438. [PMID: 38338081 PMCID: PMC10854863 DOI: 10.3390/ani14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Electrochemotherapy (ECT) in combination with the gene electrotransfer of interleukin 12 (IL-12 GET) has been successfully used in veterinary medicine for the treatment of mast cell tumours (MCT), but the biomarkers that could predict response to this treatment have not yet been investigated. The aim of this study was to determine the plasma nucleosome and serum ferritin concentrations, as well as the lactate dehydrogenase (LDH) activity, in the serum of treated patients before and one and six months after treatment to evaluate their utility as potential biomarkers that could predict response to the combined treatment. The study was conducted in 48 patients with a total of 86 MCTs that we treated with the combined treatment. The blood samples used for analysing the potential predictive biomarkers were taken before treatment and one and six months after treatment, when the response to treatment was also assessed. The Nu. Q® Vet Cancer Test, the Canine Ferritin ELISA Kit, and the RX Daytona+ automated biochemical analyser were used to analyse the blood samples. The results showed that the plasma nucleosome concentration (before treatment (BT): 32.84 ng/mL (median); one month after treatment (1 M AT): 58.89 ng/mL (median); p = 0.010) and serum LDH activity (BT: 59.75 U/L (median); 1 M AT: 107.5 U/L (median); p = 0.012) increased significantly one month after treatment and that the increase correlated significantly with the presence of a more pronounced local reaction (necrosis, swelling, etc.) at that time point for both markers (nucleosome: BT (necrosis): 21.61 ng/mL (median); 1 M AT (necrosis): 69.92 ng/mL (median), p = 0.030; LDH: BT (necrosis): 54.75 U/L (median); 1 M AT (necrosis): 100.3 U/L (median), p = 0.048). Therefore, both the plasma nucleosome concentration and serum LDH activity could serve as early indicators of the effect of the treatment. In this context, the serum ferritin concentration showed no significant predictive potential for treatment response (p > 0.999 for all comparisons). In conclusion, this study provides some new and important observations on the use of predictive biomarkers in veterinary oncology. Furthermore, it emphasises the need for the continued identification and validation of potential predictive biomarkers in dogs with MCT and other malignancies undergoing ECT treatment in combination with IL-12 GET to ultimately improve treatment outcomes.
Collapse
Affiliation(s)
- Maša Vilfan
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia (U.L.T.); (A.N.S.)
| | - Urša Lampreht Tratar
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia (U.L.T.); (A.N.S.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.Č.); (G.S.)
| | - Nina Milevoj
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia (U.L.T.); (A.N.S.)
| | - Alenka Nemec Svete
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia (U.L.T.); (A.N.S.)
| | - Maja Čemažar
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.Č.); (G.S.)
| | - Nataša Tozon
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia (U.L.T.); (A.N.S.)
| |
Collapse
|
5
|
Wang Y, Lin Y, Wu S, Sun J, Meng Y, Jin E, Kong D, Duan G, Bei S, Fan Z, Wu G, Hao L, Song S, Tang B, Zhao W. BioKA: a curated and integrated biomarker knowledgebase for animals. Nucleic Acids Res 2024; 52:D1121-D1130. [PMID: 37843156 PMCID: PMC10767812 DOI: 10.1093/nar/gkad873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.
Collapse
Affiliation(s)
- Yibo Wang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihao Lin
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sicheng Wu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Sun
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Meng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui Jin
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demian Kong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangya Duan
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqi Bei
- Qilu University of Technology (Shandong Academy of Sciences), Shandong 250353, China
| | - Zhuojing Fan
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Gangao Wu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lili Hao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shuhui Song
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Bixia Tang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenming Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Sala G, Orsetti C, Meucci V, De Marchi L, Sgorbini M, Bonelli F. Case-Control Study: Endogenous Procalcitonin and Protein Carbonylated Content as a Potential Biomarker of Subclinical Mastitis in Dairy Cows. Vet Sci 2023; 10:670. [PMID: 38133221 PMCID: PMC10747190 DOI: 10.3390/vetsci10120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Procalcitonin (PCT) and protein carbonylated content (PCC) are promising biomarkers for bacterial infection and inflammation in veterinary medicine. This study examined plasma PCT and PCC levels in healthy cows (H) and cows with subclinical mastitis (SCM). A total of 130 cows (65 H and 65 SCM) were included in this study. Blood samples were collected, and plasma was frozen at -80 °C. PCT levels were determined using a bovine procalcitonin ELISA kit, while PCC was measured following the methodology of Levine et al. Statistical analysis revealed a significant difference in PCT levels between H (75.4 pg/mL) and SCM (107.3 pg/mL) cows (p < 0.001) and significantly lower concentrations of PCC in the SCM group (H: 0.102 nmol/mL/mg, SCM: 0.046 nmol/mL/mg; p < 0.001). The PCT cut-off value for distinguishing healthy and subclinical mastitis animals was >89.8 pg/mL (AUC 0.695), with a sensitivity of 66.2% and specificity of 69.2%. PCT showed potential value as a diagnostic tool to help in decision making for subclinical mastitis cases, while PCC requires further studies to investigate the trend of this biomarker during localized pathology.
Collapse
Affiliation(s)
- Giulia Sala
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Chiara Orsetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| | - Francesca Bonelli
- Department of Veterinary Sciences, University of Pisa, Via Livornese s.n.c., San Piero a Grado, 56122 Pisa, Italy; (C.O.); (V.M.); (L.D.M.); (M.S.); (F.B.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, San Piero a Grado (PI), 56122 Pisa, Italy
| |
Collapse
|
7
|
Pato R, Peña R, Pelegrí-Pineda A, Crusellas-Villorbina N, Pisoni L, Devant M, Marti S, Solà-Oriol D, Bassols A, Saco Y. Validation of the fCAL turbo immunoturbidimetric assay for measurement of calprotectin in porcine and bovine fecal samples. Res Vet Sci 2023; 164:105042. [PMID: 37806097 DOI: 10.1016/j.rvsc.2023.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The concentration of calprotectin in feces is a well-studied marker of gastrointestinal inflammation in humans. However, little is known about fecal calprotectin in farm animals. In this work, we have validated an immunoturbidimetric method for fecal calprotectin (Bühlmann fCAL® turbo assay, Schönenbuch, Switzerland) in porcine and bovine fecal samples. Linearity was evaluated by serial dilution (R2 > 0.97 was obtained for both species). Accuracy was assessed by a recovery study, with results between 80 and 120% for low, medium, and high samples in both species. Intra- and inter-assay variability was <20%. Limit of detection was 6.4 μg/g in pig and 5.3 μg/g in cow. Limit of quantification was 13.4 μg/g (pig) and 11.1 μg/g (cow). Additionally, clinical validation has been included to evaluate the ability of the assay to detect inflammatory status in the intestine under different management conditions. In experiments with porcine, it was found that piglets treated with ZnO had lower concentrations of fecal calprotectin. In a second experiment in bovine, calves with diarrhea had higher concentration of fecal calprotectin. The Bühlmann fCAL® turbo assay is suitable for measurement of calprotectin in porcine and bovine fecal samples. Moreover, fecal calprotectin could be a good biomarker of intestinal inflammation in both species.
Collapse
Affiliation(s)
- Raquel Pato
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Raquel Peña
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Anna Pelegrí-Pineda
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Núria Crusellas-Villorbina
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Lucia Pisoni
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Maria Devant
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Sonia Marti
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Anna Bassols
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain.
| | - Yolanda Saco
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| |
Collapse
|
8
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
9
|
Whelan R, Tönges S, Böhl F, Lyko F. Epigenetic biomarkers for animal welfare monitoring. Front Vet Sci 2023; 9:1107843. [PMID: 36713882 PMCID: PMC9874107 DOI: 10.3389/fvets.2022.1107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Biomarkers for holistic animal welfare monitoring represent a considerable unmet need in veterinary medicine. Epigenetic modifications, like DNA methylation, provide important information about cellular states and environments, which makes them highly attractive for biomarker development. Up until now, much of the corresponding research has been focused on human cancers. However, the increasing availability of animal genomes and epigenomes has greatly improved our capacity for epigenetic biomarker development. In this review, we provide an overview about animal DNA methylation patterns and the technologies that enable the analysis of these patterns. We also describe the key frameworks for compound DNA methylation biomarkers, DNA methylation clocks and environment-specific DNA methylation signatures, that allow complex, context-dependent readouts about animal health and disease. Finally, we provide practical examples for how these biomarkers could be applied for health and environmental exposure monitoring, two key aspects of animal welfare assessments. Taken together, our article provides an overview about the molecular and biological foundations for the development of epigenetic biomarkers in veterinary science and their application potential in animal welfare monitoring.
Collapse
Affiliation(s)
- Rose Whelan
- Creavis, Evonik Operations GmbH, Hanau, Germany
| | - Sina Tönges
- Innovation Management, German Cancer Research Center, Heidelberg, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany,*Correspondence: Frank Lyko ✉
| |
Collapse
|
10
|
van Galen G, Olsen E, Siwinska N. Biomarkers of Kidney Disease in Horses: A Review of the Current Literature. Animals (Basel) 2022; 12:2678. [PMID: 36230418 PMCID: PMC9559299 DOI: 10.3390/ani12192678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Creatinine only allows detection of kidney disease when 60 to 75% of the glomerular function is lost and is therefore not an ideal marker of disease. Additional biomarkers could be beneficial to assess kidney function and disease. The objectives are to describe new equine kidney biomarkers. This systematic review assesses the available literature, including the validation process and reference values, following which the authors suggest recommendations for clinical use. SDMA may have some potential as equine kidney biomarker, but there is currently a lack of evidence that SDMA offers any advantage compared to creatinine in detecting Acute Kidney Injury (AKI). Cystatin C and podocin show potential as biomarkers for kidney disease (including detecting AKI earlier than creatinine) and should be studied further. NGAL has potential as a biomarker of kidney disease (including detecting AKI earlier than creatinine), and potential as an inflammatory marker. Literature on MMP-9 does not allow for conclusive statements about its potential as a biomarker for kidney disease. The future may show that NAG has potential. For all biomarkers, at this stage, available scientific information is limited or too scarce to support clinical use, and only SDMA can be measured for clinical purposes. In conclusion, there are multiple new biomarkers with the potential to diagnose kidney problems. However, there are only a few studies available and more data is needed before these biomarkers can be applied and recommended in our daily practice.
Collapse
Affiliation(s)
- Gaby van Galen
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
- Goulburn Valley Equine Hospital, Congupna, VIC 3633, Australia
| | - Emil Olsen
- Veterinary Teaching Hospital (Universitetsdjursjukhuset, UDS), Swedish Veterinary Agricultural University (SLU), 750 07 Uppsala, Sweden
| | - Natalia Siwinska
- Department of Internal Medicine, Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences Wroclaw, 50-375 Wroclaw, Poland
| |
Collapse
|
11
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
12
|
Farschtschi S, Riedmaier-Sprenzel I, Phomvisith O, Gotoh T, Pfaffl MW. The successful use of -omic technologies to achieve the 'One Health' concept in meat producing animals. Meat Sci 2022; 193:108949. [PMID: 36029570 DOI: 10.1016/j.meatsci.2022.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Human health and wellbeing are closely linked to healthy domestic animals, a vital wildlife, and an intact ecosystem. This holistic concept is referred to as 'One Health'. In this review, we provide an overview of the potential and the challenges for the use of modern -omics technologies, especially transcriptomics and proteomics, to implement the 'One Health' idea for food-producing animals. These high-throughput studies offer opportunities to find new potential molecular biomarkers to monitor animal health, detect pharmacological interventions and evaluate the wellbeing of farm animals in modern intensive livestock systems.
Collapse
Affiliation(s)
- Sabine Farschtschi
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Irmgard Riedmaier-Sprenzel
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Eurofins Medigenomix Forensik GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany
| | - Ouanh Phomvisith
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
13
|
Geurden T, Smith ER, Vercruysse J, Yazwinski T, Rehbein S, Nielsen MK. Reflections and future directions for continued development and refinement of guidelines for anthelmintic efficacy studies. Vet Parasitol 2022; 307-308:109741. [PMID: 35667202 DOI: 10.1016/j.vetpar.2022.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022]
Abstract
This reflection paper complements the WAAVP (World Association for the Advancement of Veterinary Parasitology) general anthelmintic efficacy guideline, which outlines the general principles of anthelmintic efficacy evaluation across all animal host species. It provides background to the recommendations made in the WAAVP general anthelmintic efficacy guideline, with insights into the discussions leading to specific recommendations in the general guideline or the absence thereof. Furthermore, this paper discusses recent technological advancements with potential value to the evaluation of anthelmintic efficacy that may be considered for future versions of the general or species-specific guidelines if supported by sufficient levels of evidence. Finally, it also identifies potential research questions, such as the statistical approach for comparing worm counts between groups of animals.
Collapse
Affiliation(s)
| | - Emily R Smith
- Center for Veterinary Medicine, USA Food and Drug Administration, Rockville, USA
| | - Jozef Vercruysse
- Faculty of Veterinary Medicine, University of Gent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Tom Yazwinski
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Steffen Rehbein
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Yazwinski T, Höglund J, Permin A, Gauly M, Tucker C. World Association for the Advancement of Veterinary Parasitology (WAAVP): second edition of guidelines for evaluating the efficacy of anthelmintics in poultry. Vet Parasitol 2022; 305:109711. [DOI: 10.1016/j.vetpar.2022.109711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
15
|
Treeful AE, Coffey EL, Friedenberg SG. A scoping review of autoantibodies as biomarkers for canine autoimmune disease. J Vet Intern Med 2022; 36:363-378. [PMID: 35192227 PMCID: PMC8965235 DOI: 10.1111/jvim.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Autoantibody biomarkers are valuable tools used to diagnose and manage autoimmune diseases in dogs. However, prior publications have raised concerns over a lack of standardization and sufficient validation for the use of biomarkers in veterinary medicine. OBJECTIVES Systematically compile primary research on autoantibody biomarkers for autoimmune disease in dogs, summarize their methodological features, and evaluate their quality; synthesize data supporting their use into a resource for veterinarians and researchers. ANIMALS Not used. METHODS Five indices were searched to identify studies for evaluation: PubMed, CAB Abstracts, Web of Science, Agricola, and SCOPUS. Two independent reviewers (AET and ELC) screened titles and abstracts for exclusion criteria followed by full-text review of remaining articles. Relevant studies were classified based on study objectives (biomarker, epitope, technique). Data on study characteristics and outcomes were synthesized in independent data tables for each classification. RESULTS Ninety-two studies qualified for final analysis (n = 49 biomarker, n = 9 epitope, and n = 34 technique studies). A high degree of heterogeneity in study characteristics and outcomes reporting was observed. Opportunities to strengthen future studies could include: (1) routine use of negative controls, (2) power analyses to inform sample sizes, (3) statistical analyses when appropriate, and (4) multiple detection techniques to confirm results. CONCLUSIONS These findings provide a resource that will allow veterinary clinicians to efficiently evaluate the evidence supporting the use of autoantibody biomarkers, along with the varied methodological approaches used in their development.
Collapse
Affiliation(s)
- Amy E. Treeful
- Department of Veterinary Population MedicineCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
| | - Emily L. Coffey
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
| | - Steven G. Friedenberg
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
16
|
Bazzano M, Marchegiani A, Troisi A, McLean A, Laus F. Serum Amyloid A as a Promising Biomarker in Domestic Animals’ Reproduction: Current Knowledge and Future Perspective. Animals (Basel) 2022; 12:ani12050589. [PMID: 35268158 PMCID: PMC8909795 DOI: 10.3390/ani12050589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute phase proteins (APPs) are useful markers which can be evaluated in animals to assess health status and characterize inflammation, infection, and trauma. Among APPs, serum amyloid A (SAA) has been widely investigated in pets and food-producing species as a possible biomarker of inflammatory and infective conditions, especially in the field of animal reproduction. The aims of this paper are to review the literature available on the use of SAA for the diagnosis and monitoring of inflammatory reproductive disease in animals, critically appraising the usefulness of such marker and summarizing the current state of knowledge. Abstract The investigation of acute phase proteins in veterinary medicine has opened the doors towards the identification and use of new markers for a timely assessment of health status in both companion and food-producing animals. The aim of this paper is to review the literature available on the use of serum amyloid A (SAA), an acute phase protein, for the diagnosis and monitoring of reproductive disorders in animals. This review critically appraises the usefulness of such marker in clinical practice and summarizes the current state of knowledge. Recent advances in the diagnosis and monitoring of reproductive diseases are presented, highlighting where SAA evaluation may enhance early diagnostic tools for dogs, cats, cattle, and equines.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.M.); (A.T.); (F.L.)
- Correspondence:
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.M.); (A.T.); (F.L.)
| | - Alessandro Troisi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.M.); (A.T.); (F.L.)
| | - Amy McLean
- Department of Animal Science, University of California, Davis (UC Davis), Davis, CA 95616, USA;
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.M.); (A.T.); (F.L.)
| |
Collapse
|
17
|
Grobman M, Rindt H, Reinero CR. Proteomic Characterization of Canine Gastric Fluid by Liquid Chromatography-Mass Spectrometry for Development of Protein Biomarkers in Regurgitation, Vomiting, and Cough. Front Vet Sci 2021; 8:670007. [PMID: 34307522 PMCID: PMC8292676 DOI: 10.3389/fvets.2021.670007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Reflux and aspiration in people cause and exacerbate respiratory diseases in the absence of gastrointestinal signs. Protein biomarkers in humans detect extraesophageal reflux (EER) from oropharyngeal (OP) and bronchoalveloar lavage samples. Reflux likely contributes to respiratory disease in dogs. The objectives of this study were to analyze the canine gastric fluid (GF) proteome and compare this to the OP proteome in normal, vomiting/regurgitating, and coughing dogs to identify biomarkers for EER/aspiration. Twenty-three client-owned dogs were enrolled. Canine GF samples (n = 5) and OP swabs in normal (n = 6), vomiting/regurgitating (n = 7), and coughing (n = 5) dogs were within 2 weeks of sample collection. Protein digests were analyzed by liquid chromatography–mass spectrometry. Differential abundance (DA) of proteins between groups was evaluated by Fisher's exact test with p < 0.0004 significance level after correction for multiple comparisons. DA was found between all groups (p < 0.0001): GF vs. normal (n = 130 proteins), coughing vs. normal (n = 22 proteins), and vomiting/regurgitating vs. normal (n = 20 proteins). Protein abundance was highly variable between dogs. Gastrointestinal-specific proteins were found in OP swabs from vomiting/regurgitating and coughing dogs but not from healthy dogs. In conclusion, the proteomic composition of the OP varies between health and disease. The presence of gastrointestinal-specific proteins in OP of coughing dogs may suggest reflux and/or aspiration as contributing factors. The variable protein abundance warrants investigation into biomarker panels.
Collapse
Affiliation(s)
- Megan Grobman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hansjörg Rindt
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Evaluation of Plasmatic Procalcitonin in Healthy, and in Systemic Inflammatory Response Syndrome (SIRS) Negative or Positive Colic Horses. Animals (Basel) 2021; 11:ani11072015. [PMID: 34359143 PMCID: PMC8300415 DOI: 10.3390/ani11072015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Procalcitonin (PCT) increased in the case of systemic inflammatory response syndrome (SIRS), especially due to bacterial infection. The correlation between SIRS score and plasma PCT levels in horses have not been evaluated, and no studies investigated plasma PCT concentration over time. In the present study, PCT and SIRS score were evaluated in colic horses at admission to the hospital and at 24, 48, 72 and 96 h. Statistically differences were detected between healthy vs. all colic horses and between healthy vs. SIRS positive or SIRS negative horses. No correlation was observed between SIRS score and PCT. This suggests a role of plasmatic PCT as good biomarker for colic. Abstract Colic horses show systemic inflammatory response syndrome (SIRS) clinical signs. Procalcitonin (PCT) showed increased circulating levels in sick horses. This study compares plasma PCT concentrations in healthy vs. SIRS negative/positive colic horses over time, and evaluates PCT and SIRS score potential correlation, to verify the usefulness of PCT for the evaluation of SIRS severity. Ninety-one horses were included; 43/91 were healthy, on basis of physical examination, blood work and SIRS score (score = 0), while 48/91 were sick colic horses, classified as SIRS-negative (score < 2) and positive (score ≥ 2). Moreover, a 0–6 point-scale SIRS score was calculated (assessing mucous membrane color and blood lactate concentration). PCT was evaluated at admission, and at 24, 48, 72 and 96 h, using a commercial kit for equine species. We verified by the ANOVA test PCT differences between healthy vs. colic horses, healthy vs. SIRS-negative or SIRS-positive colic horses, at all sampling times, and the correlation between the SIRS score at admission with the SIRS score. Statistically significant differences were detected between healthy vs. all colic horses and between healthy vs. SIRS-positive or negative horses at all sampling times. No correlation was observed between the SIRS score at admission and PCT values. PCT was statistically higher in colic horses compared to the healthy ones, suggesting a role as a biomarker for colic.
Collapse
|
19
|
Swain T, Deaver CM, Lewandowski A, Myers MJ. Lipopolysaccharide (LPS) induced inflammatory changes to differentially expressed miRNAs of the host inflammatory response. Vet Immunol Immunopathol 2021; 237:110267. [PMID: 33993048 DOI: 10.1016/j.vetimm.2021.110267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
In veterinary medicine, inflammation in swine is evaluated principally by clinical signs. This method is often unreliable when assessing large animal populations because of inconsistent interpretations of clinical observations. This study examined whether changes in miRNA expression can predict the severity of the inflammatory response in swine after administration of Escherichia coli lipopolysaccharide (LPS). Whole blood from swine challenged with LPS at 0.125 μg/kg to 2.0 μg/kg body weight was collected at 0, 1, 3, and 8 h post LPS-challenge. Mature miRNAs were extracted from plasma and quantitative real-time-PCR (qRT-PCR) was used to evaluate the 84 most abundant swine miRNAs found in plasma. The miRNA changes in expression were assessed using the comparative CT Method (ΔΔCT method) for normalization with an exogenous control. The results revealed that expression of ssc-let-7e-5p, ssc-mir-22-3p, and ssc-miR-146a-5p were the most significantly changed miRNA over the time course. At 1 h post-LPS, ssc-let-7e-5p decreased as the LPS dosage levels increased from 0.125 to 1.0 μg/kg. Similarly, as the LPS doses increased from 0.125 to 0.5 μg/kg, ssc-miR-22-3p levels significantly decreased at 1 h post-LPS. In the 2.0 μg/kg LPS, ssc-miR-146a-5p levels increased between 0 and 3 h post-LPS; however, expression was downregulated with a 145 % decrease from 3 to 8 h. The three miRNA biomarkers suggest potentially useful surrogate endpoints for the evaluation of inflammatory and endotoxemia responses in swine.
Collapse
Affiliation(s)
- Trevon Swain
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD, 20708, United States
| | - Christine M Deaver
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD, 20708, United States
| | - Anne Lewandowski
- U.S. Food and Drug Administration Center for Drug Evaluation and Research, Silver Spring, MD, 20903, United States
| | - Michael J Myers
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD, 20708, United States.
| |
Collapse
|
20
|
Rossi TM. Study design synopsis: Clinical validation of diagnostic tests. Equine Vet J 2020; 53:410-413. [PMID: 33135256 DOI: 10.1111/evj.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Tanya M Rossi
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Peltoniemi O, Oliviero C, Yun J, Grahofer A, Björkman S. Management practices to optimize the parturition process in the hyperprolific sow. J Anim Sci 2020; 98:S96-S106. [PMID: 32810239 DOI: 10.1093/jas/skaa140] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Jinhyeon Yun
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Alexander Grahofer
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - Stefan Björkman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| |
Collapse
|
22
|
Grahofer A, Björkman S, Peltoniemi O. Diagnosis of endometritis and cystitis in sows: use of biomarkers. J Anim Sci 2020; 98:S107-S116. [PMID: 32810245 PMCID: PMC7433928 DOI: 10.1093/jas/skaa144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alexander Grahofer
- Clinic for Swine, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Switzerland
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - Stefan Björkman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| |
Collapse
|
23
|
Fonseca LA, Orozco AM, Souto PC, Dornelas LR, Filho WP, Girardi FM, Ermita PA, Fagundes V. Plasma cholinesterase activity as an environmental impact biomarker in juvenile green turtles (Chelonia mydas). PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: The objective of this study was to evaluate the enzymatic activity of plasma cholinesterase in Chelonia mydas marine turtles belonging to two populations, according to their capture sites, under the absence and probable influence of anthropic effects. A total of 74 animals were used and later divided into two groups, based on the capture site. Blood samples were collected from all captured animals, which were then released into the sea at the site of capture. A descriptive statistical analysis of the plasma cholinesterase activity values and an analysis comparing these values based on the capture site were performed. Samples of heparinized plasma from animals captured at the two different sites were analyzed. Plasma cholinesterase activity ranged from 121 to 248U/L, with a mean and standard deviation of 186.1±30.68U/L. When comparing plasma cholinesterase activity values in individuals based on the capture site, a significant difference was observed. Establishing reference values for different sea turtle populations is necessary to interpret future sampling results and to allow sea turtles to be used as sentinels of ecosystem health. Future studies are needed to evaluate other populations and the activity of plasma cholinesterase in juvenile marine turtles, in relation to environmental contamination.
Collapse
|
24
|
Franco-Martínez L, Martínez-Subiela S, Cerón JJ, Tecles F, Eckersall PD, Oravcova K, Tvarijonaviciute A. Biomarkers of health and welfare: A One Health perspective from the laboratory side. Res Vet Sci 2019; 128:299-307. [PMID: 31869596 DOI: 10.1016/j.rvsc.2019.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
A biomarker is any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological. The One World, One Health concept established that human and animal health and the environmental state are highly interconnected, sharing common aspects that can be applied globally in these three components. In this paper, we review how the concept of One Health can be applied to biomarkers of health and welfare, with a special focus on five points that can be applied to any biomarker when it is expected to be used to evaluate the human, animal or environmental health. Three of these points are: (1) the different biomarkers that can be used, (2) the different sample types where the biomarkers can be analysed, and (3) the main methods that can be used for their measurement. In addition, we will evaluate two key points needed for adequate use of a biomarker in any situation: (4) a proper analytical validation in the sample that it is going to be used, and (5) a correct selection of the biomarker. It is expected that this knowledge will help to have a broader idea about the use of biomarkers of health and welfare and also will contribute to a better and more accurate use of these biomarkers having in mind their One Health perspective.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Peter David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK.
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK.
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
25
|
Eckersall PD. Calibration of Novel Protein Biomarkers for Veterinary Clinical Pathology: A Call for International Action. Front Vet Sci 2019; 6:210. [PMID: 31312640 PMCID: PMC6614203 DOI: 10.3389/fvets.2019.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Research into the identification and use of protein biomarkers for use in veterinary clinical pathology has produced numerous potential analytes that could become common tests in the future. One problem that has to be overcome in the general acceptance of a novel biomarker is that differing standards for calibration may be developed by individual laboratories or the diagnostic companies that will provide kits for widespread use. This has been apparent in the development of acute phase protein biomarkers such as canine C-reactive protein. In order to overcome this problem an international initiative is required to ensure that assays developed in separate laboratories would have a consistent calibration protocol so that results produced are equivalent. International reference preparations for serum protein analysis for each relevant species should be established for use as primary standard in the calibration of biomarkers for veterinary diagnosis.
Collapse
Affiliation(s)
- Peter David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,European Research Area (ERA) Chair Laboratory, VetMedZg, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
26
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
27
|
Wu CC, Chang SC, Zeng GY, Chu HW, Huang Y, Liu HP. Proteome Analyses Reveal Positive Association of COL2A1, MPO, TYMS, and IGFBP5 with Canine Mammary Gland Malignancy. Proteomics Clin Appl 2019; 13:e1800151. [PMID: 30578659 DOI: 10.1002/prca.201800151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/22/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To identify aberrantly expressed proteins contributing to pathogenesis of canine mammary tumors (CMTs) which are the most prevalent neoplasms in female dogs and include different types. EXPERIMENTAL DESIGN Frozen tissue specimens of normal mammary gland (n = 7), lobular hyperplasia (n = 6), simple carcinoma (n = 6), and complex carcinoma (n = 6) are collected from 11 CMT cases. Tissue homogenates are comparatively analyzed by the isobaric tags for relative and absolute quantification (iTRAQ) combined with LC-MS/MS to identify proteins differentially expressed in different-type CMT tissues. RESULTS Among 3795 proteins identified and quantified among all groups, 133, 127, and 98 proteins are particularly overexpressed in simple carcinoma, complex carcinoma, and both types, respectively, compared with normal and hyperplastic tissues. Moreover, collagen type II alpha 1 chain (COL2A), myeloperoxidase (MPO), thymidylate synthetase (TYMS), and insulin-like growth factor-binding protein 5 (IGFBP5) are validated to be highly expressed in different-type CMT tissues using immunoblotting and immunohistochemistry. Notably, COL2A1 and IGFBP5 levels are correlated with clinical stages. CONCLUSIONS AND CLINICAL RELEVANCE COL2A1, MPO, TYMS, and IGFBP5 protein levels are positively associated with CMT development. Data expedite further investigations to improve treatment regimens for CMT.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan City, 33302, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan City, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan City, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Taoyuan City, 33305, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo-Kuang Rd., Taichung City, 40227, Taiwan.,Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, No. 250-1, Kuo-Kuang Rd., Taichung City, 40227, Taiwan
| | - Guang-You Zeng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo-Kuang Rd., Taichung City, 40227, Taiwan
| | - Hao-Wei Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan City, 33302, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing St., Taoyuan City, 33305, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo-Kuang Rd., Taichung City, 40227, Taiwan
| |
Collapse
|
28
|
Myers MJ, Deaver CM. Identification of swine protein biomarkers of inflammation-associated pain. Res Vet Sci 2018; 122:186-188. [PMID: 30529274 DOI: 10.1016/j.rvsc.2018.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/15/2022]
Abstract
This study sought to determine if proteins associated with pain in humans could be measured using a swine in vitro model of inflammation. This would constitute the first step towards using them as surrogate endpoints to help support effectiveness indications for investigational new animal drugs to control pain in swine. Swine whole blood samples were cultured in vitro with E. coli derived-lipopolysaccharide (LPS) or without LPS for 24 h. Supernatants from these cultures were collected to determine the concentration of proteins associated with pain and whether the levels were altered in response to LPS-induced inflammation. Bradykinin protein levels steadily increased over time due to LPS stimulation and returned to 0 h levels after 6 h of culture. Corticotrophin-releasing factor protein levels were not affected by LPS. Substance-P protein trended towards increasing concentrations after LPS stimulation, following a time-concentration profile similar to that observed with bradykinin. These results suggest that 2 biomarkers may be useful as surrogate endpoints for evaluation of pain.
Collapse
Affiliation(s)
- Michael J Myers
- Center for Veterinary Medicine, Office of Research, Division of Applied Veterinary Research, 8401 Muirkirk Road, Laurel, MD 20708, United States.
| | - Christine M Deaver
- Center for Veterinary Medicine, Office of Research, Division of Applied Veterinary Research, 8401 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|