1
|
Jaworska J, Tobolski D, Salem SE, Kahler A, Wocławek-Potocka I, de Mestre AM. Single-cell atlas of the pregnant equine endometrium before and after implantation†. Biol Reprod 2025; 112:458-473. [PMID: 39756438 DOI: 10.1093/biolre/ioaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse. Single-cell RNA sequencing was used to characterize the transcriptome of nearly 97,000 endometrial cells collected from biopsies of the endometrium at the beginning (day 33 of gestation) and after embryo implantation (day 42 of gestation) in mares. Sixteen immune and 24 non-immune cell clusters were identified, representing known major cell populations as well as novel subpopulations of horse immune cells such as resident innate lymphoid cells and mucosal-associated invariant T cells. Contrary to current knowledge, endometrial natural killer (eNK) cells were the most abundant endometrial leukocyte population during implantation in horses. Moreover, eNK cells not only expressed genes that may interact with fetal MHC I, such as LY49F, but also exert immunoregulatory functions independent of MHC I expression, such as CD96/TIGIT. Analogous to other species studied, upregulation of CXCR4 was found in several subpopulations of immune cells. Our results suggest that despite distinctive and later placentation compared with humans, horses share some key similarities in the mechanisms of embryo implantation.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Dawid Tobolski
- Department of Large Animal Diseases and Clinic, University of Life Sciences, Warsaw, Poland
| | - Shebl E Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY USA
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Amanda M de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
2
|
Carter AM. Genomics, the diversification of mammals, and the evolution of placentation. Dev Biol 2024; 516:167-182. [PMID: 39173812 DOI: 10.1016/j.ydbio.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
When and why did variations in placental structure and function evolve? Such questions cannot be addressed without a reliable version of mammalian phylogeny. Twenty-five years ago, the mammalian tree was reshaped by molecular phylogenetics. Soon it was shown, in contrast to prevailing theories, that the common ancestor of placental mammals had invasive placentation. Subsequently, evolution of many other features of extraembryonic membranes was addressed. This endeavour stimulated research to fill gaps in our knowledge of placental morphology. Last year the mammalian tree was again revised based on a large set of genomic data. With that in mind, this review provides an update on placentation in the nineteen orders of placental mammals, incorporating much recent data. The principal features such as shape, interdigitation, the interhaemal barrier and the yolk sac are summarized in synoptic tables. The evolution of placental traits and its timing is then explored by reference to the revised mammalian tree. Examples are the early appearance of epitheliochorial placentation in the common ancestor of artiodactyls, perissodactyls, pangolins and carnivores (with reversion to invasive forms in the latter) and later refinements such as the binucleate trophoblast cells and placentomes of ruminants. In primates, the intervillous space gradually evolved from the more basic labyrinth whereas trophoblast invasion of the decidua was a late development in humans and great apes. Only seldom can we glimpse the "why" of placental evolution. The best examples concern placental hormones, including some striking examples of convergent evolution such as the chorionic gonadotropins of primates and equids. In concluding, I review current ideas about what drives placental evolution and identify significant gaps in our knowledge of placentation, including several relevant to the evolution of placentation in primates.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Fedorka CE, Scoggin KE, El-Sheikh Ali H, Troedsson MHT. Evaluating the IL-6 Family of Cytokines Throughout Equine Gestation. Am J Reprod Immunol 2024; 92:e13910. [PMID: 39072818 DOI: 10.1111/aji.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The interleukin (IL)-6 family of cytokines is grouped by a common receptor subunit (gp130), but functions in distinct but overlapping physiological activities, including regulation of acute phase reaction and the balance between effector and regulatory T cell populations-both of which play a role in successful pregnancy maturation. METHODS Here, we aim to assess the expression profiles of members of the IL-6 cytokine family throughout equine gestation. To do so, RNA Sequencing was performed on chorioallantois and endometrium of mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4) and diestrus endometrium (n = 3). Expression levels of members of the IL-6 cytokine family including ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine factor 1 (CLCF1), galectin-10, oncostatin M (OSM), and IL-6, -11, and -27 were evaluated in addition to the receptors for IL-6 (IL-6R) and the common receptor subunit gp130. Additionally, peripheral concentration of IL-6 was assessed. RESULTS In the chorioallantois, differential expression of IL-6, IL-11, CNTF, CLCF1, OSM, and CT-1 was noted. In the endometrium, the gestational age of pregnancy impacted the expression of IL-11, CNTF, and CT-1. Circulatory IL-6 concentrations reached their highest concentrations at 120 days, with lesser concentrations noted at 45, 180, 300, and 330 days. Both IL-6R and gp130 altered in expression throughout equine gestation. CONCLUSION In conclusion, members of the IL-6 cytokine family appear to fluctuate constantly throughout equine pregnancy, with varying expression profiles noted when comparing individual members. Additionally, different expression profiles were noted when comparing chorioallantois, endometrium, and circulation, indicating that the function of the cytokine is tissue-specific.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kirsten E Scoggin
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hossam El-Sheikh Ali
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Mats H T Troedsson
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
5
|
Shilton CA, Kahler A, Roach JM, Raudsepp T, de Mestre AM. Lethal variants of equine pregnancy: is it the placenta or foetus leading the conceptus in the wrong direction? Reprod Fertil Dev 2022; 35:51-69. [PMID: 36592981 DOI: 10.1071/rd22239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Embryonic and foetal loss remain one of the greatest challenges in equine reproductive health with 5-10% of established day 15 pregnancies and a further 5-10% of day 70 pregnancies failing to produce a viable foal. The underlying reason for these losses is variable but ultimately most cases will be attributed to pathologies of the environment of the developing embryo and later foetus, or a defect intrinsic to the embryo itself that leads to lethality at any stage of gestation right up to birth. Historically, much research has focused on the maternal endometrium, endocrine and immune responses in pregnancy and pregnancy loss, as well as infectious agents such as pathogens, and until recently very little was known about the both small and large genetic variants associated with reduced foetal viability in the horse. In this review, we first introduce key aspects of equine placental and foetal development. We then discuss incidence, risk factors and causes of pregnancy loss, with the latter focusing on genetic variants described to date that can impact equine foetal viability.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Jessica M Roach
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| |
Collapse
|
6
|
Shen Y, Ren H, Davshilt T, Tian S, Wang X, Yi M, Ulaangerel T, Li B, Dugarjav M, Bou G. The transcriptome landscapes of allantochorion and vitelline-chorion in equine day 30 conceptus. Front Cell Dev Biol 2022; 10:958205. [PMID: 35990610 PMCID: PMC9386053 DOI: 10.3389/fcell.2022.958205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
During equine early gestation, trophectoderm forms chorion tissue, which is composed of two parts that one is covering allantoin, called allantochorion (AC) and another is covering yolk sac, which here we call vitelline-chorion (VC). Given that little is known about the equine trophoblast-derived chorion differentiation at an early stage, we first compared the transcriptome of AC and VC of day 30 equine conceptus based on RNA-sequencing. As a result, we found that compared to VC, there are 484 DEGs, including 305 up- and 179 down-regulated genes in AC. GO and KEGG analysis indicated that up-regulated genes in AC are mainly cell proliferation and cell adhesion-related genes, participating in allantois expansion and allantochorionic-placenta formation; dominant genes in VC are extracellular exosome and other cell adhesion-related genes implicated in direct and indirect conceptus-maternal communication. Additionally, as for the progenitor chorion tissue of equine chorionic gonadotropin secreting endometrium cup-the chorionic girdle (CG), which locates at the junction of the dilating AC and regressing VC, we revealed its unique gene expression pattern and the gene regulation during its further differentiation in vitro. Collectively, this study sheds light on the molecular events regarding the trophoblast differentiation and function at an early stage of the equine preimplantation conceptus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manglai Dugarjav
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Carter AM. Evolution of Placental Hormones: Implications for Animal Models. Front Endocrinol (Lausanne) 2022; 13:891927. [PMID: 35692413 PMCID: PMC9176407 DOI: 10.3389/fendo.2022.891927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Human placenta secretes a variety of hormones, some of them in large amounts. Their effects on maternal physiology, including the immune system, are poorly understood. Not one of the protein hormones specific to human placenta occurs outside primates. Instead, laboratory and domesticated species have their own sets of placental hormones. There are nonetheless several examples of convergent evolution. Thus, horse and human have chorionic gonadotrophins with similar functions whilst pregnancy-specific glycoproteins have evolved in primates, rodents, horses, and some bats, perhaps to support invasive placentation. Placental lactogens occur in rodents and ruminants as well as primates though evolved through duplication of different genes and with functions that only partially overlap. There are also placental hormones, such as the pregnancy-associated glycoproteins of ruminants, that have no equivalent in human gestation. This review focusses on the evolution of placental hormones involved in recognition and maintenance of pregnancy, in maternal adaptations to pregnancy and lactation, and in facilitating immune tolerance of the fetal semiallograft. The contention is that knowledge gained from laboratory and domesticated mammals can translate to a better understanding of human placental endocrinology, but only if viewed in an evolutionary context.
Collapse
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Deng L, Li Z, Tang C, Han Y, Zhang L, Liao Q. Quantitative analysis of the serum proteome during early pregnancy in mares. Anim Sci J 2022; 93:e13727. [PMID: 35476278 DOI: 10.1111/asj.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Equine pregnancy is currently diagnosed by rectal palpation, ultrasonographic examination, or by measuring changes in hormones in the blood. In the present study, we identified proteins that are differentially expressed in the sera of early pregnant and non-pregnant mares in order to develop a novel method for diagnosing equine pregnancy. Serum samples were obtained from 18 adult mares, pregnancy at day 32 after ovulation (n = 9) and in diestrus (n = 9). Proteomic analysis of the samples was conducted using liquid chromatography-electrospray ionization-tandem mass spectrometry. We identified 467 proteins from a total of 3514 peptides. Thirty-two proteins (15 upregulated and 17 downregulated) were significantly differentially expressed between the two groups. The Gene Ontology enrichment analysis revealed that they are related to extracellular matrix assembly, blood coagulation, and hemostasis, and the prominent molecular functions were integrin binding, cell adhesion molecule binding, and glycine C-acetyltransferase activity. The pathway analysis of Kyoto Encyclopaedia of Genes and Genomes showed that the top three pathways identified were glycine, serine, and threonine metabolism; cysteine and methionine metabolism; and ether lipid metabolism. The selected five serum proteins were newly potential candidates for pregnancy diagnosis in mares.
Collapse
Affiliation(s)
- Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zheng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chi Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Yuwei Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Linxi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Leppo KA, Collins PA, Morgado KP, Silva AC, Thomas A, Rutigliano HM. Lymphocyte soluble factors from pregnant cows modulate mRNA transcript abundances encoding for proteins associated with trophoblast growth and development. Anim Reprod Sci 2021; 228:106747. [PMID: 33838589 DOI: 10.1016/j.anireprosci.2021.106747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
This study was conducted to determine whether T cell populations are responsible for modulating placental development during gestation in cattle. It was hypothesized that CD4+CD25+ and γ/δ+ T cells modulate gene expression, based on mRNA transcript abundances, and promote proliferation and survival of trophoblast cells. Peripheral blood was collected from cows at 160 to 180 days of gestation and non-pregnant cows, T cell populations CD8+, CD4+, CD4+CD25+, CD24+CD25-, and γ/δ+ T cells were isolated, cultured for 48 h, and supernatant was collected. Placental samples were digested, and trophoblast cells were cultured for 24 h. Trophoblast cells were cultured with 50 μL of T cell-conditioned media and 50 μL of fresh culture media for an additional 48 h. Samples in control wells were treated with unconditioned media. Trophoblast cell proliferation, apoptosis, and mRNA transcript assays were conducted. There was no effect of T cell population on trophoblast apoptosis rate, proliferation, and relative mRNA transcript abundances. The T cell supernatant from pregnant and non-pregnant cows induced greater apoptosis rates in trophoblast cells than unconditioned media. Trophoblast cells proliferated less when treated with T cell supernatant from pregnant compared to unconditioned medium and non-pregnant cows. Treatment with the T cell supernatant from pregnant cows resulted in larger abundances of BMP5, IGF1R, PAG10, FGF2, RSPO3 and TMED2 and also a lesser abundance of FGF2 mRNA transcript than non-pregnant group and unconditioned media treatments. Supernatant from T cell derived from pregnant cows modulates trophoblast mRNA transcript abundances differently from T cell supernatant of non-pregnant cows.
Collapse
Affiliation(s)
- Kelsy A Leppo
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Preston A Collins
- School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Kira P Morgado
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Ana C Silva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Aaron Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA; School of Veterinary Medicine, Utah State University, Logan, UT, USA.
| |
Collapse
|
10
|
El-Sheikh Ali H, Scoggin K, Linhares Boakari Y, Dini P, Loux S, Fedorka C, Esteller-Vico A, Ball B. Kinetics of placenta-specific 8 (PLAC8) in equine placenta during pregnancy and placentitis. Theriogenology 2020; 160:81-89. [PMID: 33189077 DOI: 10.1016/j.theriogenology.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023]
Abstract
Placenta-specific 8 (PLAC8) is one of the placenta-regulatory genes which is highly conserved among eutherian mammals. However, little is known about its expression in equine placenta (chorioallantois; CA and endometrium; EN) during normal and abnormal pregnancy. Therefore, the current study was designed to 1) elucidate the expression of PLAC8 in equine embryonic membranes during the preimplantation period, 2) characterize the expression profile of PLAC8 in equine CA (45d, 4mo, 6mo, 10 mo, 11 mo and postpartum) and EN (14d, 4mo, 6mo, 10 mo, and 11 mo) obtained from pregnant mares (n = 4/timepoint), as well as, d14 non-pregnant EN (n = 4), and 3) investigate the expression profile of PLAC8 in ascending placentitis (n = 5) and in nocardioform placentitis (n = 6) in comparison to normal CA. In the preimplantation period, PLAC8 mRNA was not abundant in the trophectoderm of d8 equine embryo and d14 conceptus, while it was abundant later in d 30, 31, 34, and 45 chorion. In normal pregnancy, PLAC8 mRNA expression in CA at 45 d gradually decline to reach nadir at 6mo before gradually increasing to its peak at 11mo and postpartum CA. The mRNA expression of PLAC8 was significantly upregulated in CA from mares with ascending and nocardioform placentitis compared to control mares. Immunohistochemistry revealed that PLAC8 is localized in equine chorionic epithelium and immune cells. Our results revealed that PLAC8 expression in equine chorion is dynamic during pregnancy and is regulated in an implantation-dependent manner. Moreover, PLAC8 is implicated in the immune response in CA during equine ascending placentitis and nocardioform placentitis.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt
| | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Yatta Linhares Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Faculty of Veterinary Medicine, Ghent University, Merelbeke, B-9820, Belgium
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Carleigh Fedorka
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Alejandro Esteller-Vico
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
11
|
Kammerer R, Ballesteros A, Bonsor D, Warren J, Williams JM, Moore T, Dveksler G. Equine pregnancy-specific glycoprotein CEACAM49 secreted by endometrial cup cells activates TGFB. Reproduction 2020; 160:685-694. [PMID: 33065543 PMCID: PMC11404722 DOI: 10.1530/rep-20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/07/2020] [Indexed: 11/08/2022]
Abstract
In early equine pregnancy, a highly invasive trophoblast cell subpopulation, the chorionic girdle cells, invade the endometrium and form endometrial cups (EC). These cells express classical MHC molecules, thereby stimulating a humoral and cellular immune response, resulting in a massive accumulation of maternal CD4+ and CD8+ T cells around the EC. Nevertheless, no immediate destruction of endometrial cups by maternal lymphoid cells occurs, presumably due to immune tolerance. Although the environment of EC is rich in TGFB and in FOXP3+, CD4+ T cells, the mechanisms leading to tolerance have not been elucidated. Recently, we discovered that equine trophoblast cells secrete pregnancy-specific glycoproteins (PSGs). Since human and murine PSGs activate latent TGFB, we hypothesized that equine PSGs may have a similar activity. We performed plasmon surface resonance experiments to show that equine PSG CEACAM49 can directly bind to the latency-associated peptide (LAP) of both TGFB1 and TGFB2. We then found that the binding of CEACAM49 leads to the activation of TGFB1 as determined by both ELISA and cell-based assays. Furthermore, the activation of TGFB is a unique function of PSGs within the human CEA family, because CEACAM1, 3, 5, 6, 8 do not activate this cytokine. This finding further strengthens the classification of CEACAM49 as an equine PSG. Based on our results, we hypothesize that activation of latent TGFB in the EC environment by equine PSGs secreted by invasive trophoblast cells, could contribute to the generation of regulatory T cells (Tregs) to maintain immune tolerance.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Deng L, Han Y, Tang C, Liao Q, Li Z. Label-Free Mass Spectrometry-Based Quantitative Proteomics Analysis of Serum Proteins During Early Pregnancy in Jennies ( Equus asinus). Front Vet Sci 2020; 7:569587. [PMID: 33195553 PMCID: PMC7642908 DOI: 10.3389/fvets.2020.569587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022] Open
Abstract
Early pregnancy in jennies is routinely determined by palpation per rectum or ultrasonography and also by detecting steroid hormone and chorionic gonadotropin levels in the blood, plasma, and serum. Herein we applied label-free mass spectrometry-based quantitative proteomics to identify serum proteins that were differentially expressed between early pregnant (day 45 after ovulation) and non-pregnant jennies. Bioinformatics analysis allowed illustration of pathways potentially involved in early pregnancy. We identified 295 proteins from a total of 2,569 peptides. Twenty-five proteins (22 upregulated and three downregulated) were significantly differentially expressed between the early pregnant and non-pregnant groups. The majority of the differentially expressed proteins were involved in defense response, early embryonic development, and hormone signaling pathways. Furthermore, functional protein analyses suggested that proteins were involved in binding, enzyme inhibitor activity, and enzyme regulator activity. Five serum proteins—granulin precursor/acrogranin, transgelin-2, fibronectin, fibrinogen-like 1, and thrombospondin 1—can be considered as novel, reliable candidates to detect pregnancy in jennies. To the best of our knowledge, this is the first study to use label-free mass spectrometry-based quantitative proteomics to analyze serum proteins during early pregnancy in jennies. Our results should facilitate the identification of valuable pregnancy diagnostic markers in early pregnant jennies.
Collapse
Affiliation(s)
- Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chi Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zheng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
13
|
Schuler G. [Equine chorionic gonadotrophin: Biology and veterinary use]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:344-354. [PMID: 33080658 DOI: 10.1055/a-1235-7973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pituitary gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play a prominent role in the control of gonadal functions. Therefore, their use in the treatment of fertility disorders (e. g. anovulatory anestrus) as well as in biotechnology (e. g. superovulation, hormone programs for cycle synchronization) is of substantial interest. Preparations of FSH or LH are relatively expensive due to the laborious extraction from pituitary tissue and are therefore reserved for special indications. In primates and equids, the chorionic epithelium expresses an LH-like molecule (chorionic gonadotrophin, CG). Equine CG (eCG) selectively binds to LH receptors in equids. In all other domestic mammalian species, equine CG (eCG) shows an extraordinarily high FSH activity in addition to its LH activity ("dual activity"). Since its market launch, this has therefore gained considerable importance as a comparatively inexpensive FSH analogue, mainly for use in ruminants and pigs. In contrast to the human CG (hCG), which may be isolated non-invasively from the urine of pregnant women and is widely used as LH analogue, eCG must be extracted from the blood of pregnant donor mares, as eCG concentrations in urine are only minimal. Following reports of deaths and suffering of donor mares associated with eCG collection in South American settings, the current practice of eCG production has given rise to increasing public criticism. This has recently led to calls for a general production ban. Primary aim of this review is therefore to summarize the current state of knowledge concerning the properties and biology of this molecule, which is also highly interesting from the point of view of basic science.
Collapse
Affiliation(s)
- Gerhard Schuler
- Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-Universität Gießen
| |
Collapse
|
14
|
Camacho-Rozo CA, Santos GDO, Wenzen DDP, Cousseau SB, Wronski JG, Argenta FF, Winter GHZ, Pavarini SP, Mattos RC. Sudden Death by Ovarian Hemorrhage and Hemoperitoneum in a Pregnant Miniature Mare. J Equine Vet Sci 2020; 90:102996. [PMID: 32534773 DOI: 10.1016/j.jevs.2020.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
This report describes a case of sudden death of a pregnant miniature mare due to an acute ovarian hemorrhage leading to fatal hemoperitoneum. The miniature horse was a 12-year-old female, 60 days pregnant, with a body condition score of 7 (1-9), with a history of obesity and laminitis. Necropsy revealed hemoperitoneum due to an ovarian capsule rupture and hemorrhage after a physiological supplementary ovulation and luteinization. Ovarian rupture after ovulation is uncommon in mares.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando F Argenta
- Patologia Veterinária- Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
15
|
Podico G, Canisso IF, Roady PJ, Austin SM, Carossino M, Balasuriya U, Ellerbrock RE, Lima FS, Ferreira-Dias G, Douglas RH. Uterine responses and equine chorionic gonadotropin concentrations after two intrauterine infusions with kerosene post early fetal loss in mares. Theriogenology 2019; 147:202-210. [PMID: 31787468 DOI: 10.1016/j.theriogenology.2019.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Pregnancy loss during the normal lifespan of endometrial cups (∼37-120-150 days of gestation) may affect a mare's ability to conceive again in the same breeding season, as equine chorionic gonadotropin (eCG) secretion by retained endometrial cups can lead to abnormal ovulations and follicular growth. While intrauterine kerosene infusion has anecdotally been proposed as a treatment for endometrial cup retention, there are no controlled studies evaluating kerosene's ability to enhance endometrial cup regression following abortion. The objectives of this study were to assess uterine response, systemic side effects, and efficacy of intrauterine kerosene infusions after abortion. We hypothesized that kerosene infusions would hasten regression of endometrial cups without detrimental effects on the endometrium and the mare's general health. Twelve light-breed mares were enrolled in the study after an experimentally induced abortion with cloprostenol (n = 12) by 60 ± 2 days of gestation. Mares were randomly allocated to receive an intrauterine infusion with 500 mL of kerosene (n = 6) or 500 mL saline (n = 6) on days 21 and 35 after pregnancy termination. Uterine biopsies were collected at days 7, 21, 35, and 49 post-abortion to evaluate the degree of endometrial fibrosis with Picrosirius Red Stain and to be graded according to the Kenney & Doig 1986 classification. Furthermore, histomorphometry analysis of the endometrium lining, glandular epithelium and glandular density was performed. Endometrial lymphocyte B CD20+, lymphocyte T CD3+, and macrophage IBA-1+ cell populations were characterized by immunohistochemistry. Physical examinations, blood cell counts, and serum biochemistry were performed before, and for 2 days after each uterine infusion. Serum samples were collected for assessment of eCG concentrations. Continuous data were analyzed with MIXED procedure with repeated measures in SAS, categorical data with LOGISTIC procedure of SAS. Significance was set at p < 0.05. Kerosene infusion did not affect complete blood cell counts, serum chemistry parameters, or physical examinations. Concentrations of eCG decreased over time (p < 0.001), but there were no differences between groups or time by group interactions (p = 0.72). Histological evaluation of the uterus showed no signs of increased fibrosis or degeneration in the treatment group. In conclusion, while kerosene infusions did not appear to have detrimental effects on mare health, our findings suggest that the use of kerosene in the uterus does not enhance the regression of endometrial cups by 49 days post-abortion.
Collapse
Affiliation(s)
- Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Patrick J Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Scott M Austin
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, Department of Pathobiological Sciences, Baton Rouge, LA, USA
| | - Udeni Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, Department of Pathobiological Sciences, Baton Rouge, LA, USA
| | - Robyn E Ellerbrock
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, 30605, USA
| | - Fabio S Lima
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Graça Ferreira-Dias
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
16
|
Loux SC, Dini P, El-Sheikh Ali H, Kalbfleisch T, Ball BA. Characterization of the placental transcriptome through mid to late gestation in the mare. PLoS One 2019; 14:e0224497. [PMID: 31725741 PMCID: PMC6855469 DOI: 10.1371/journal.pone.0224497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The placenta is a dynamic organ which undergoes extensive remodeling throughout pregnancy to support, protect and nourish the developing fetus. Despite the importance of the placenta, very little is known about its gene expression beyond very early pregnancy and post-partum. Therefore, we utilized RNA-sequencing to characterize the transcriptome from the fetal (chorioallantois) and maternal (endometrium) components of the placenta from mares throughout gestation (4, 6, 10, 11 m). Within the endometrium, 47% of genes changed throughout pregnancy, while in the chorioallantois, 29% of genes underwent significant changes in expression. Further bioinformatic analyses of both differentially expressed genes and highly expressed genes help reveal similarities and differences between tissues. Overall, the tissues were more similar than different, with ~ 95% of genes expressed in both tissues, and high similarities between the most highly expressed genes (9/20 conserved), as well as marked similarities between the PANTHER pathways identified. The most highly expressed genes fell under a few broad categories, including endocrine and immune-related transcripts, iron-binding proteins, extracellular matrix proteins, transport proteins and antioxidants. Serine protease inhibitors were particularly abundant, including SERPINA3, 6 and 14, as well as SPINK7 and 9. This paper also demonstrates the ability to effectively separate maternal and fetal components of the placenta, with only a minimal amount of chorioallantoic contamination in the endometrium (~8%). This aspect of equine placentation is a boon for better understanding gestational physiology and allows the horse to be used in areas where a separation of fetal and maternal tissues is essential. Overall, these data represent the first large-scale characterization of placental gene expression in any species and include time points from multiple mid- to late-gestational stages, helping further our understanding of gestational physiology.
Collapse
Affiliation(s)
- Shavahn C. Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
- Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura City, Egypt
| | - Theodore Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Barry A. Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Aurich J, Köhne M, Wulf M, Nagel C, Beythien E, Gautier C, Zentek J, Aurich C. Effects of dietary L-arginine supplementation to early pregnant mares on conceptus diameter-Preliminary findings. Reprod Domest Anim 2019; 54:772-778. [PMID: 30809848 PMCID: PMC6850369 DOI: 10.1111/rda.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/11/2019] [Indexed: 12/04/2022]
Abstract
The importance of the amino acid L-arginine (ARG) for conceptus growth and litter size has been demonstrated in various species. L-arginine is part of embryo-derived polyamines, a substrate for nitric oxide synthase and stimulates protein synthesis by the embryo. In the present study, we have investigated whether dietary L-arginine supplementation stimulates early conceptus growth in mares. Warmblood mares with singleton pregnancies received either an arginine-supplemented diet (approximately 0.0125% of body weight, n = 12) or a control diet (n = 11) from days 15 to 45 after ovulation. Diameter of the embryonic vesicle (days 14, 17, 20 of pregnancy) and size of the embryo respective foetus (length and maximal diameter, days 25-45 of pregnancy at 5-day intervals) were determined by transrectal ultrasound. At foaling, weight and size of the foal and the placenta were determined. Blood for determination of equine chorionic gonadotrophin (eCG) and progestin concentrations was collected repeatedly. Neither eCG nor progestin concentration in plasma of mares differed between groups at any time. No effects of arginine treatment on diameter of the embryonic vesicle between days 14 and 20 of pregnancy were detected. Diameter of the embryo/foetus on days 40 to 45 of pregnancy strongly tended to be enhanced by arginine supplementation (p = 0.06). Weight and size of neither the foal nor placenta at birth differed between groups. In conclusion, L-arginine supplementation was without negative effects on early equine embryos and may support embryonic growth at the beginning of placentation.
Collapse
Affiliation(s)
- Jörg Aurich
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Martin Köhne
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Manuela Wulf
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Christina Nagel
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Elisabeth Beythien
- Graf Lehndorff Institute for Equine ScienceVetmeduni ViennaNeustadt (Dosse)Germany
| | - Camille Gautier
- Department of Small Animals and Horses, Obstetrics, Gynaecology and AndrologyVetmeduni ViennaViennaAustria
| | - Jürgen Zentek
- Institute for Animal NutritionFree University BerlinBerlinGermany
| | - Christine Aurich
- Department of Small Animals and Horses, Artificial Insemination and Embryo TransferVetmeduni ViennaViennaAustria
| |
Collapse
|
18
|
Rapacz-Leonard A, Leonard M, Chmielewska-Krzesińska M, Paździor-Czapula K, Janowski T. Major histocompatibility complex class I in the horse (Equus caballus) placenta during pregnancy and parturition. Placenta 2018; 74:36-46. [PMID: 30638631 DOI: 10.1016/j.placenta.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/07/2018] [Accepted: 12/15/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Major histocompatibility protein class I (MHC-I) is believed to be expressed in the horse allantochorion only in limited areas at limited times. However, its expression has only been investigated in early pregnancy with non-quantitative techniques that cannot reliably detect small amounts of protein. OBJECTIVE To quantify the relative expression of MHC-I in the allantochorion and endometrium during days 90-240 of pregnancy (PREG), parturition with physiological delivery of fetal membranes (PHYS), and parturition with retention of these membranes (FMR). Also, to visualize protein expression and determine whether classical or non-classical MHC-I mRNA is expressed. ANIMALS Heavy draft horses. SETTING PREG horses (n = 12) were sampled postmortem at a slaughterhouse. PHYS (n = 6) and FMR (n = 5) horses were sampled at farms in the vicinity of Olsztyn, Poland. METHODS For relative quantification of MHC-I, western blotting with densitometry was used. To visualize MHC-I, immunohistochemistry was used. For mRNA identification, RT-PCR was performed. RESULTS Although the quantity of MHC-I was lower during PREG than parturition, it was present in the allantochorion and endometrium during PREG. During parturition, MHC-I expression was upregulated in the allantochorion (PHYS vs. PREG: 2.7-times higher, 95% confidence interval, 1.3- to 5.7-times higher; FMR vs. PREG: 3.2-times higher, 95% confidence interval, 1.5- to 6.7-times higher). At parturition, staining for MHC-I was detected in the microcotyledons. Classical and non-classical MHC-I were expressed in both tissues during PREG, PHYS, and FMR. CONCLUSION MHC-I protein is present in the horse allantochorion and endometrium for at least the first two-thirds of pregnancy and at parturition.
Collapse
Affiliation(s)
- A Rapacz-Leonard
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland.
| | - M Leonard
- University of Warmia and Mazury, Olsztyn, Poland
| | - M Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - K Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - T Janowski
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
19
|
Read JE, Cabrera-Sharp V, Offord V, Mirczuk SM, Allen SP, Fowkes RC, de Mestre AM. Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 2018; 156:313-330. [PMID: 30306765 PMCID: PMC6170800 DOI: 10.1530/rep-18-0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.
Collapse
Affiliation(s)
- Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Offord
- Research Support OfficeThe Royal Veterinary College, London, UK
| | - Samantha M Mirczuk
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Steve P Allen
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| |
Collapse
|
20
|
Read JE, Cabrera-Sharp V, Kitscha P, Cartwright JE, King PJ, Fowkes RC, de Mestre AM. Glial Cells Missing 1 Regulates Equine Chorionic Gonadotrophin Beta Subunit via Binding to the Proximal Promoter. Front Endocrinol (Lausanne) 2018; 9:195. [PMID: 29755409 PMCID: PMC5932191 DOI: 10.3389/fendo.2018.00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGβ-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between -119 bp and -335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.
Collapse
Affiliation(s)
- Jordan E. Read
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Victoria Cabrera-Sharp
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Phoebe Kitscha
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Judith E. Cartwright
- St. Georges Medical School, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Robert C. Fowkes
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Amanda M. de Mestre
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- *Correspondence: Amanda M. de Mestre,
| |
Collapse
|
21
|
Allen WT, Gower S, Wilsher S. Localisation of epidermal growth factor (EGF), its specific receptor (EGF-R) and aromatase at the materno-fetal interface during placentation in the pregnant mare. Placenta 2017; 50:53-59. [DOI: 10.1016/j.placenta.2016.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
|
22
|
Conley A. Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology 2016; 86:355-65. [DOI: 10.1016/j.theriogenology.2016.04.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
|
23
|
eCG Concentration and Subsequent Reproductive Activity in Mares After Abortion at Day 70. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Aleksic D, Blaschke L, Mißbach S, Hänske J, Weiß W, Handler J, Zimmermann W, Cabrera-Sharp V, Read JE, de Mestre AM, O'Riordan R, Moore T, Kammerer R. Convergent evolution of pregnancy-specific glycoproteins in human and horse. Reproduction 2016; 152:171-84. [PMID: 27280409 DOI: 10.1530/rep-16-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.
Collapse
Affiliation(s)
- Denis Aleksic
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Blaschke
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sophie Mißbach
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jana Hänske
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Wiebke Weiß
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes Handler
- Equine Center Bad SaarowFreie Universität Berlin, Bad Saarow, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology LaboratoryLudwig-Maximilians-University, Munich, Germany Department of UrologyUniversity Hospital, Munich, Germany
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Ronan O'Riordan
- School of Biochemistry and Cell BiologyUniversity College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell BiologyUniversity College Cork, Cork, Ireland
| | - Robert Kammerer
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
25
|
|
26
|
Allen WR, Rossdale PD, Antczak DF, Stout TAE. Science-in-brief: Report of the Havemeyer Foundation W.R. (Twink) Allen Symposium on Equine Fertility and Assisted Reproduction. Equine Vet J 2015; 48:267-9. [PMID: 26607391 DOI: 10.1111/evj.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W R Allen
- The Paul Mellon Laboratory, Newmarket, Suffolk, UK
| | | | - D F Antczak
- Baker Institute - College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - T A E Stout
- Utrecht University - Department of Equine Sciences, Utrecht, The Netherlands
| |
Collapse
|
27
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
28
|
Cabrera-Sharp V, Read JE, Richardson S, Kowalski AA, Antczak DF, Cartwright JE, Mukherjee A, de Mestre AM. SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion. Endocrinology 2014; 155:3054-64. [PMID: 24848867 PMCID: PMC4183921 DOI: 10.1210/en.2013-2116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
Abstract
TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta.
Collapse
Affiliation(s)
- Victoria Cabrera-Sharp
- Comparative Biomedical Sciences (V.C-S., J.E.R., S.R., A.A.K., A.M., A.M.d.M.), The Royal Veterinary College, London NW1 0TU, United Kingdom; Baker Institute for Animal Health (D.F.A.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; and Biomedical Sciences (J.E.C.), St George's University of London SW17 0RE, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.
Collapse
|