1
|
Ni K, Lu X, Li S, Li F, Zhang Y, Cui R, Fan Y, Huang H, Chen X, Wang J, Wang S, Guo L, Zhao L, He Y, Ye W. GhLCYε-3 characterized as a lycopene cyclase gene responding to drought stress in cotton. Comput Struct Biotechnol J 2024; 23:384-395. [PMID: 38226314 PMCID: PMC10788185 DOI: 10.1016/j.csbj.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Drought stress significantly affects crop productivity. Carotenoids are essential photosynthetic pigment for plants, bacteria, and algae, with signaling and antioxidant functions. Lutein is a crucial branch product in the carotenoid synthesis pathway, which effectively improves the stress tolerance of higher plants. lycopene cyclase, a central enzyme for lutein synthesis, holds great significance in regulating lutein production. This research establishes a correlation between lutein content and stress resistance by measuring the drought resistance and lutein content of various cotton materials. To identify which crucial genes are associated with lutein, the lycopene cyclase family (LCYs) was analyzed. The research found that LCYs form a highly conserved family divided into two subfamilies, LCY-ε (lycopene ε-cyclase) and LCY-β (lycopene β-cyclase). Most members of the LCY family contain photoresponsive elements and abscisic acid elements. qRT-PCR demonstrates showed that most genes responded positively to drought stress, and GhLCYε-3 was expressed significantly differently under drought stress. Virus-induced gene silencing (VIGS) assay showed that the content of GhLCYε-3 was significantly increased with MDA and PRO, and the contents of chlorophyll and lutein were significantly decreased in pYL156 plants. The decrease in GhLCYε-3 expression is speculated to lead to reduced lutein content in vivo, resulting in the accumulation of reactive oxygen species (ROS) and decreased drought tolerance. This research enriched the understanding of LCY gene family and lutein function, and provided a new reference for cotton planting in arid areas. Synopsis Lycopene cyclase plays an important role in enhancing the ability of scavenging ROS and drought resistance of plants.
Collapse
Affiliation(s)
- Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuyan Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fei Li
- Hunan Institute of Cotton Science, Changde 415101, Hunan China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde 415101, Hunan China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| |
Collapse
|
2
|
Lin Z, Liu D, Xu Y, Wang M, Yu Y, Diener AC, Liu KH. Pupylation-Based Proximity-Tagging of FERONIA-Interacting Proteins in Arabidopsis. Mol Cell Proteomics 2024; 23:100828. [PMID: 39147029 PMCID: PMC11532908 DOI: 10.1016/j.mcpro.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed 14 previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.
Collapse
Affiliation(s)
- Zhuoran Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Di Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yifan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Mengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - YongQi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Andrew C Diener
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Wu C, Cai D, Li J, Lin Z, Wei W, Shan W, Chen J, Lu W, Su X, Kuang J. Banana MabHLH28 positively regulates the expression of softening-related genes to mediate fruit ripening independently or via cooperating with MaWRKY49/111. HORTICULTURE RESEARCH 2024; 11:uhae053. [PMID: 38706579 PMCID: PMC11069428 DOI: 10.1093/hr/uhae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/17/2024] [Indexed: 05/07/2024]
Abstract
Texture softening is a physiological indicator of fruit ripening, which eventually contributes to fruit quality and the consumer's acceptance. Despite great progress having been made in identification of the genes related to fruit softening, the upstream transcriptional regulatory pathways of these softening-related genes are not fully elucidated. Here, a novel bHLH gene, designated as MabHLH28, was identified because of its significant upregulation in banana fruit ripening. DAP-Seq analysis revealed that MabHLH28 bound to the core sequence of 'CAYGTG' presented in promoter regions of fruit softening-associated genes, such as the genes related to cell wall modification (MaPG3, MaPE1, MaPL5, MaPL8, MaEXP1, MaEXP2, MaEXPA2, and MaEXPA15) and starch degradation (MaGWD1 and MaLSF2), and these bindings were validated by EMSA and DLR assays. Transient overexpression and knockdown of MabHLH28 in banana fruit resulted in up- and down-regulation of softening-related genes, thereby hastening and postponing fruit ripening. Furthermore, overexpression of MabHLH28 in tomato accelerated the ripening process by elevating the accumulation of softening-associated genes. In addition, MabHLH28 showed interaction withMaWRKY49/111 and itself to form protein complexes, which could combinatorically strengthen the transcription of softening-associated genes. Taken together, our findings suggest that MabHLH28 mediates fruit softening by upregulating the expression of softening-related genes either alone or in combination with MaWRKY49/111.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Agronomy Dean, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Mohamadi SF, Babaeian Jelodar N, Bagheri N, Nematzadeh G, Hashemipetroudi SH. New insights into comprehensive analysis of magnesium transporter ( MGT) gene family in rice ( Oryza sativa L.). 3 Biotech 2023; 13:322. [PMID: 37649592 PMCID: PMC10462602 DOI: 10.1007/s13205-023-03735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Magnesium transporters (MGTs) regulate magnesium absorption, transport, and redistribution in higher plants. To investigate the role of the Oryza sativa MGTs gene family members under salt stress, this study analyzed the protein properties, gene structure, phylogenetic relationship, synteny patterns, expression, and co-expression networks of 23 non-redundant OsMGT. The evolutionary relationship of the OsMGT gene family was fully consistent with their functional domain, and were divided into three main classes based on the conserved domain: MMgT, CorA-like, and NIPA. The α/β patterns in the protein structures were highly similar in the CorA-like and NIPA members, with the conserved structures in the Mg2+-binding and catalytic regions. The CorA-like clade-related proteins demonstrated the highest numbers of protein channels with Pro, Ser, Lys, Gly, and Tyr, as the critical binding residues. The expression analysis of OsMGT genes in various tissues showed that MGTs' gene family may possess critical functions during rice development. Gene expression analysis of candidate OsMGT using reverse-transcription quantitative real-time PCR (RT-qPCR) found that four OsMGT genes exhibited different expression patterns in salt-sensitive and salt-tolerant rice genotypes. We hypothesize that the OsMGT gene family members may be involved in responses to salt stress. These findings could be useful for further functional investigation of MGTs as well as defining their involvement in abiotic stress studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03735-4.
Collapse
Affiliation(s)
- Seyede Fateme Mohamadi
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Nadali Babaeian Jelodar
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Nadali Bagheri
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Ghorbanali Nematzadeh
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, 4818166996 Iran
| | - Seyyed Hamidreza Hashemipetroudi
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, 4818166996 Iran
| |
Collapse
|
5
|
Kumari M, Kapoor R, Devanna BN, Varshney S, Kamboj R, Rai AK, Sharma TR. iTRAQ based proteomic analysis of rice lines having single or stacked blast resistance genes: Pi54/ Pi54rh during incompatible interaction with Magnaporthe oryzae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:871-887. [PMID: 37520805 PMCID: PMC10382468 DOI: 10.1007/s12298-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01327-3.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi India
| | - Richa Kamboj
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - T. R. Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, India
| |
Collapse
|
6
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
7
|
Wang Y, Xu Q, Shan H, Ni Y, Xu M, Xu Y, Cheng B, Li X. Genome-wide analysis of 14-3-3 gene family in four gramineae and its response to mycorrhizal symbiosis in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1117879. [PMID: 36875617 PMCID: PMC9982033 DOI: 10.3389/fpls.2023.1117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
14-3-3 proteins (regulatory protein family) are phosphate serine-binding proteins. A number of transcription factors and signaling proteins have been shown to bind to the 14-3-3 protein in plants, which plays a role in regulating their growth (seed dormancy, cell elongation and division, vegetative and reproduction growth and stress response (salt stress, drought stress, cold stress). Therefore, the 14-3-3 genes are crucial in controlling how plants respond to stress and develop. However, little is known about the function of 14-3-3 gene families in gramineae. In this study, 49 14-3-3 genes were identified from four gramineae, including maize, rice, sorghum and brachypodium, and their phylogeny, structure, collinearity and expression patterns of these genes were systematically analyzed. Genome synchronization analysis showed large-scale replication events of 14-3-3 genes in these gramineae plants. Moreover, gene expression revealed that the 14-3-3 genes respond to biotic and abiotic stresses differently in different tissues. Upon arbuscular mycorrhizal (AM) symbiosis, the expression level of 14-3-3 genes in maize significantly increased, suggesting the important role of 14-3-3 genes in maize-AM symbiosis. Our results provide a better understanding on the occurrence of 14-3-3 genes in Gramineae plants, and several important candidate genes were found for futher study on AMF symbiotic regulation in maize.
Collapse
Affiliation(s)
- Yanping Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Qiang Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Hanchen Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ying Ni
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
9
|
Herrera-Ubaldo H, Campos SE, López-Gómez P, Luna-García V, Zúñiga-Mayo VM, Armas-Caballero GE, González-Aguilera KL, DeLuna A, Marsch-Martínez N, Espinosa-Soto C, de Folter S. The protein-protein interaction landscape of transcription factors during gynoecium development in Arabidopsis. MOLECULAR PLANT 2023; 16:260-278. [PMID: 36088536 DOI: 10.1016/j.molp.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Flowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success. After the establishment of carpel identity, many tissues arise to form a mature gynoecium. TFs have been described as regulators of gynoecium development, and some interactions and complexes have been identified. However, broad knowledge about the interactions among these TFs and their participation during development remains scarce. In this study, we used a systems biology approach to understand the formation of a complex reproductive unit-as the gynoecium-by mapping binary interactions between well-characterized TFs. We analyzed almost 4500 combinations and detected more than 250 protein-protein interactions (PPIs), resulting in a process-specific interaction map. Topological analyses suggest hidden functions and novel roles for many TFs. In addition, we observed a close relationship between TFs involved in auxin and cytokinin-signaling pathways and other TFs. Furthermore, we analyzed the network by combining PPI data, expression, and genetic data, which helped us to dissect it into several dynamic spatio-temporal subnetworks related to gynoecium development processes. Finally, we generated an extended PPI network that predicts new players in gynoecium development. Taken together, all these results serve as a valuable resource for the plant community.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Sergio E Campos
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Pablo López-Gómez
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Víctor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Gerardo E Armas-Caballero
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Karla L González-Aguilera
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato, Guanajuato 36824, México
| | - Carlos Espinosa-Soto
- Instituto de Física, Universidad de San Luis Potosí, San Luis Potosí, SLP 78290, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México.
| |
Collapse
|
10
|
Nam JC, Bhatt PS, Kim SI, Kang HG. Co-immunoprecipitation for Assessing Protein-Protein Interactions in Agrobacterium-Mediated Transient Expression System in Nicotiana benthamiana. Methods Mol Biol 2023; 2690:101-110. [PMID: 37450140 DOI: 10.1007/978-1-0716-3327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The characterization of protein-protein interactions (PPI) often provides functional information about a target protein. Yeast-two-hybrid (Y2H) and luminescence/fluorescence-based detections, therefore, have been widely utilized for assessing PPI. In addition, a co-immunoprecipitation (co-IP) method has also been adopted with transient protein expression in Nicotiana benthamiana (N. benthamiana) infiltrated with Agrobacterium tumefaciens. Herein, we describe a co-IP procedure in which structural maintenance of chromosome 1 (SMC1), identified from a Y2H screening, was verified as an interacting partner for microchidia 1 (MORC1), a protein well known for its function in plant immunity and epigenetics. SMC1 and MORC1 were transiently expressed in N. benthamiana when infiltrated by Agrobacterium with the respective genes. From this approach, we identified a region of SMC1 responsible for interacting with MORC1. The co-IP method, of which outputs are mainly from immunoblot analysis, provided information about target protein expression as well, which is often useful for troubleshooting. Using this feature, we showcased a PPI confirmation from our SMC1-MORC1 study in which a full-length SMC1 protein was not detectable, and, therefore, a subsequent truncated mutant analysis had to be employed for PPI verification.
Collapse
Affiliation(s)
- Ji Chul Nam
- Department of Molecular Biosciences, Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Sung-Il Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
11
|
Shoko R, Magogo B, Pullen J, Mudziwapasi R, Ndlovu J. Construction and analysis of protein-protein interaction networks based on nuclear proteomics data of the desiccation-tolerant Xerophyta schlechteri leaves subjected to dehydration stress. Commun Integr Biol 2023; 16:2193000. [PMID: 36969388 PMCID: PMC10038031 DOI: 10.1080/19420889.2023.2193000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In order to understand the mechanism of desiccation tolerance in Xerophyta schlechteri, we carried out an in silico study to identify hub proteins and functional modules in the nuclear proteome of the leaves. Protein-protein interaction networks were constructed and analyzed from proteome data obtained from Abdalla and Rafudeen. We constructed networks in Cytoscape using the GeneMania software and analyzed them using a Network Analyzer. Functional enrichment analysis of key proteins in the respective networks was done using GeneMania network enrichment analysis, and GO (Gene Ontology) terms were summarized using REViGO. Also, community analysis of differentially expressed proteins was conducted using the Cytoscape Apps, GeneMania and ClusterMaker. Functional modules associated with the communities were identified using an online tool, ShinyGO. We identified HSP 70-2 as the super-hub protein among the up-regulated proteins. On the other hand, 40S ribosomal protein S2-3 (a protein added by GeneMANIA) was identified as a super-hub protein associated with the down-regulated proteins. For up-regulated proteins, the enriched biological process terms were those associated with chromatin organization and negative regulation of transcription. In the down-regulated protein-set, terms associated with protein synthesis were significantly enriched. Community analysis identified three functional modules that can be categorized as chromatin organization, anti-oxidant activity and metabolic processes.
Collapse
Affiliation(s)
- Ryman Shoko
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
- CONTACT Ryman Shoko Department of Biology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Babra Magogo
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Jessica Pullen
- Department of Animal Science and Rangeland Management, Lupane State University, Lupane, Zimbabwe
| | - Reagan Mudziwapasi
- Department of Research and Innovation, Midlands State University, Gweru, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
12
|
Zheng J, Yang X, Zhang Z. Using PlaPPISite to Predict and Analyze Plant Protein-Protein Interaction Sites. Methods Mol Biol 2023; 2690:385-399. [PMID: 37450161 DOI: 10.1007/978-1-0716-3327-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Proteome-wide characterization of protein-protein interactions (PPIs) is crucial to understand the functional roles of protein machinery within cells systematically. With the accumulation of PPI data in different plants, the interaction details of binary PPIs, such as the three-dimensional (3D) structural contexts of interaction sites/interfaces, are urgently demanded. To meet this requirement, we have developed a comprehensive and easy-to-use database called PlaPPISite ( http://zzdlab.com/plappisite/index.php ) to present interaction details for 13 plant interactomes. Here, we provide a clear guide on how to search and view protein interaction details through the PlaPPISite database. Firstly, the running environment of our database is introduced. Secondly, the input file format is briefly introduced. Moreover, we discussed which information related to interaction sites can be achieved through several examples. In addition, some notes about PlaPPISite are also provided. More importantly, we would like to emphasize the importance of interaction site information in plant systems biology through this user guide of PlaPPISite. In particular, the easily accessible 3D structures of PPIs in the coming post-AlphaFold2 era will definitely boost the application of plant interactome to decipher the molecular mechanisms of many fundamental biological issues.
Collapse
Affiliation(s)
- Jingyan Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, China.
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Maqsood H, Munir F, Amir R, Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:1031679. [PMID: 36507398 PMCID: PMC9731513 DOI: 10.3389/fpls.2022.1031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Tomato is a drought-sensitive crop which has high susceptibility to adverse climatic changes. Dehydration-responsive element-binding (DREB) are significant plant transcription factors that have a vital role in regulating plant abiotic stress tolerance by networking with DRE/CRT cis-regulatory elements in response to stresses. In this study, bioinformatics analysis was performed to conduct the genome-wide identification and characterization of DREB genes and promoter elements in Solanum lycopersicum. In genome-wide coverage, 58 SlDREB genes were discovered on 12 chromosomes that justified the criteria of the presence of AP2 domain as conserved motifs. Intron-exon organization and motif analysis showed consistency with phylogenetic analysis and confirmed the absence of the A3 class, thus dividing the SlDREB genes into five categories. Gene expansion was observed through tandem duplication and segmental duplication gene events in SlDREB genes. Ka/Ks values were calculated in ortholog pairs that indicated divergence time and occurrence of purification selection during the evolutionary period. Synteny analysis demonstrated that 32 out of 58 and 47 out of 58 SlDREB genes were orthologs to Arabidopsis and Solanum tuberosum, respectively. Subcellular localization predicted that SlDREB genes were present in the nucleus and performed primary functions in DNA binding to regulate the transcriptional processes according to gene ontology. Cis-acting regulatory element analysis revealed the presence of 103 motifs in 2.5-kbp upstream promoter sequences of 58 SlDREB genes. Five representative SlDREB proteins were selected from the resultant DREB subgroups for 3D protein modeling through the Phyre2 server. All models confirmed about 90% residues in the favorable region through Ramachandran plot analysis. Moreover, active catalytic sites and occurrence in disorder regions indicated the structural and functional flexibility of SlDREB proteins. Protein association networks through STRING software suggested the potential interactors that belong to different gene families and are involved in regulating similar functional and biological processes. Transcriptome data analysis has revealed that the SlDREB gene family is engaged in defense response against drought and heat stress conditions in tomato. Overall, this comprehensive research reveals the identification and characterization of SlDREB genes that provide potential knowledge for improving abiotic stress tolerance in tomato.
Collapse
Affiliation(s)
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | |
Collapse
|
14
|
Zhang K, Li Y, Huang T, Li Z. Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974598. [PMID: 36051300 PMCID: PMC9426856 DOI: 10.3389/fpls.2022.974598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses are major environmental conditions that reduce plant growth, productivity and quality. Protein-protein interaction (PPI) approaches can be used to screen stress-responsive proteins and reveal the mechanisms of protein response to various abiotic stresses. Biotin-based proximity labeling (PL) is a recently developed technique to label proximal proteins of a target protein. TurboID, a biotin ligase produced by directed evolution, has the advantages of non-toxicity, time-saving and high catalytic efficiency compared to other classic protein-labeling enzymes. TurboID-based PL has been successfully applied in animal, microorganism and plant systems, particularly to screen transient or weak protein interactions, and detect spatially or temporally restricted local proteomes in living cells. This review concludes classic PPI approaches in plant response to abiotic stresses and their limitations for identifying complex network of regulatory proteins of plant abiotic stresses, and introduces the working mechanism of TurboID-based PL, as well as its feasibility and advantages in plant abiotic stress research. We hope the information summarized in this article can serve as technical references for further understanding the regulation of plant adaptation to abiotic stress at the protein level.
Collapse
Affiliation(s)
- Kaixin Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yinyin Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Zhang H, Tao X, Fan X, Zhang S, Qin G. PpybZIP43 contributes to sucrose synthesis in pear fruits by activating PpySPS3 expression and interacts with PpySTOP1. PHYSIOLOGIA PLANTARUM 2022; 174:e13732. [PMID: 35689502 DOI: 10.1111/ppl.13732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Sucrose is an important factor affecting sweetness and flavor in pear fruits, but the molecular mechanism of sucrose synthesis regulation is relatively unknown. Here, we characterized a transcription factor gene from pear (Pyrus pyrifolia Nakai cv. "Hosui") fruits, PpybZIP43, and found that the transient overexpression of PpybZIP43 in pear fruits significantly increased the sucrose content and the relative expression level of sucrose phosphate synthase genes (PpySPS3 and PpySPS8). Subcellular localization analysis in tobacco leaves showed that PpybZIP43 was localized in the nucleus. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assays indicated that PpybZIP43 was able to activate the expression of PpySPS3 by binding specifically to the G-box (CACGTG) element in the promoter. The protein-protein interaction assays using yeast two-hybrid, bimolecular fluorescence complementation (BiFC), firefly luciferase complementation imaging (LCI), and glutathione S-transferase (GST) pull-down demonstrated that PpybZIP43 could directly interact with PpySTOP1 to form a transcription complex. This study is helpful for understanding the molecular basis of sucrose synthesis and accumulation in pear fruits and provides candidate genes for breeding.
Collapse
Affiliation(s)
- Huping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Fan
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Key Laboratory of Fruit Quality and Developmental Biology, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
16
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
17
|
Yi X, Wang X, Wu L, Wang M, Yang L, Liu X, Chen S, Shi Y. Integrated Analysis of Basic Helix Loop Helix Transcription Factor Family and Targeted Terpenoids Reveals Candidate AarbHLH Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. FRONTIERS IN PLANT SCIENCE 2022; 12:811166. [PMID: 35111184 PMCID: PMC8801783 DOI: 10.3389/fpls.2021.811166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.
Collapse
Affiliation(s)
- Xiaozhe Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
19
|
Abstract
Protein-protein interactions play a crucial role in diverse biological processes. As obligate intracellular parasites, plant viruses live and reproduce in living cells and recruit host proteins through protein-protein interactions to complete their infection process. Elucidation of the protein-protein interaction network between viruses and hosts can advance knowledge in the viral infection process at the molecule level and facilitate the development of novel antiviral technologies. One of the most classic and widely used methods to discover or confirm novel protein interactions in plant cells is the pull-down assay. For plant virology research, this method begins with the expression of a tagged viral protein (such as GST- or His-tagged) as "bait" in model plant species such as Nicotiana benthamiana. The expressed "bait" protein is purified by affinity agarose resin (e.g., glutathione or cobalt chelate) followed by a series of washes. Finally, the "bait"-"prey" protein complexes are subjected to mass spectrometry or immunoblotting analysis. In this chapter, we describe a practical protocol of the tag-based pull-down assay and discuss solutions to some common problems associated with this assay.
Collapse
Affiliation(s)
- Shanwu Lyu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
20
|
ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 2021; 16:e0261215. [PMID: 34914734 PMCID: PMC8675703 DOI: 10.1371/journal.pone.0261215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.
Collapse
Affiliation(s)
- Qurat-ul ain-Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
21
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
22
|
Faraji S, Heidari P, Amouei H, Filiz E, Abdullah, Poczai P. Investigation and Computational Analysis of the Sulfotransferase (SOT) Gene Family in Potato ( Solanum tuberosum): Insights into Sulfur Adjustment for Proper Development and Stimuli Responses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2597. [PMID: 34961068 PMCID: PMC8707064 DOI: 10.3390/plants10122597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 07/20/2023]
Abstract
Various kinds of primary metabolisms in plants are modulated through sulfate metabolism, and sulfotransferases (SOTs), which are engaged in sulfur metabolism, catalyze sulfonation reactions. In this study, a genome-wide approach was utilized for the recognition and characterization of SOT family genes in the significant nutritional crop potato (Solanum tuberosum L.). Twenty-nine putative StSOT genes were identified in the potato genome and were mapped onto the nine S. tuberosum chromosomes. The protein motifs structure revealed two highly conserved 5'-phosphosulfate-binding (5' PSB) regions and a 3'-phosphate-binding (3' PB) motif that are essential for sulfotransferase activities. The protein-protein interaction networks also revealed an interesting interaction between SOTs and other proteins, such as PRTase, APS-kinase, protein phosphatase, and APRs, involved in sulfur compound biosynthesis and the regulation of flavonoid and brassinosteroid metabolic processes. This suggests the importance of sulfotransferases for proper potato growth and development and stress responses. Notably, homology modeling of StSOT proteins and docking analysis of their ligand-binding sites revealed the presence of proline, glycine, serine, and lysine in their active sites. An expression essay of StSOT genes via potato RNA-Seq data suggested engagement of these gene family members in plants' growth and extension and responses to various hormones and biotic or abiotic stimuli. Our predictions may be informative for the functional characterization of the SOT genes in potato and other nutritional crops.
Collapse
Affiliation(s)
- Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Hoorieh Amouei
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750 Duzce, Turkey;
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00065 Helsinki, Finland
| |
Collapse
|
23
|
Kadam A, Abuthakir MHS, Jubin T, Vaishnav J, Garg A, Balaji C, Suthar D, Begum R. Identification and characterization of Poly(ADP-ribose) polymerase-1 interacting proteins during development of Dictyostelium discoideum. Protein Expr Purif 2021; 186:105923. [PMID: 34062238 DOI: 10.1016/j.pep.2021.105923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that is associated with various biological processes like chromatin remodeling, DNA damage, cell death etc. In Dictyostelium discoideum, PARP-1 has also been implicated in cellular differentiation and development. However, its interacting proteins during multicellular development are not yet explored. Hence, the present study aims to identify PARP-1 interacting proteins during multicellular development of D. discoideum. BRCA1 C-terminus (BRCT) domain of PARP-1, which is mainly involved in protein-protein interactions was cloned in pGEX4T1 vector and developmental interactome of PARP-1 were analyzed by affinity purification-mass spectrometry. These interactions were further confirmed by in-silico protein-protein docking analysis, which led to identification of the proteins that show high affinity for BRCT domain. Initially, the protein structures were modeled on SWISS MODEL and PHYRE2 servers, refined by 3Drefine and validated by PROCHECK. Further, interaction sites of BRCT and the conserved regions in all interacting proteins were predicted using cons-PPISP and ConSurf, respectively. Finally, protein-protein docking analysis was done by HADDOCK. Our results identified 19 possible BRCT interacting proteins during D. discoideum development. Furthermore, interacting residues involved in the interactions and functional regions were explored. This is the first report where PARP-1's developmental interactome in D. discoideum is well established. The current findings demonstrate PARP-1's developmental interactome in D. discoideum and provide the groundwork to understand its regulated functions in developmental biology which would undoubtedly extend our perception towards developmental diseases in higher complex organisms and their treatment.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | | | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Jayvadan Vaishnav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Abhishek Garg
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, Maharashtra, India.
| | - Devesh Suthar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| |
Collapse
|
24
|
Musavizadeh Z, Najafi-Zarrini H, Kazemitabar SK, Hashemi SH, Faraji S, Barcaccia G, Heidari P. Genome-Wide Analysis of Potassium Channel Genes in Rice: Expression of the OsAKT and OsKAT Genes under Salt Stress. Genes (Basel) 2021; 12:784. [PMID: 34065373 PMCID: PMC8160896 DOI: 10.3390/genes12050784] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium (K+), as a vital element, is involved in regulating important cellular processes such as enzyme activity, cell turgor, and nutrient movement in plant cells, which affects plant growth and production. Potassium channels are involved in the transport and release of potassium in plant cells. In the current study, three OsKAT genes and two OsAKT genes, along with 11 nonredundant putative potassium channel genes in the rice genome, were characterized based on their physiochemical properties, protein structure, evolution, duplication, in silico gene expression, and protein-protein interactions. In addition, the expression patterns of OsAKTs and OsKATs were studied in root and shoot tissues under salt stress using real-time PCR in three rice cultivars. K+ channel genes were found to have diverse functions and structures, and OsKATs showed high genetic divergence from other K+ channel genes. Furthermore, the Ka/Ks ratios of duplicated gene pairs from the K+ channel gene family in rice suggested that these genes underwent purifying selection. Among the studied K+ channel proteins, OsKAT1 and OsAKT1 were identified as proteins with high potential N-glycosylation and phosphorylation sites, and LEU, VAL, SER, PRO, HIS, GLY, LYS, TYR, CYC, and ARG amino acids were predicted as the binding residues in the ligand-binding sites of K+ channel proteins. Regarding the coexpression network and KEGG ontology results, several metabolic pathways, including sugar metabolism, purine metabolism, carbon metabolism, glycerophospholipid metabolism, monoterpenoid biosynthesis, and folate biosynthesis, were recognized in the coexpression network of K+ channel proteins. Based on the available RNA-seq data, the K+ channel genes showed differential expression levels in rice tissues in response to biotic and abiotic stresses. In addition, the real-time PCR results revealed that OsAKTs and OsKATs are induced by salt stress in root and shoot tissues of rice cultivars, and OsKAT1 was identified as a key gene involved in the rice response to salt stress. In the present study, we found that the repression of OsAKTs, OsKAT2, and OsKAT2 in roots was related to salinity tolerance in rice. Our findings provide valuable insights for further structural and functional assays of K+ channel genes in rice.
Collapse
Affiliation(s)
- Zahra Musavizadeh
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Hamid Najafi-Zarrini
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Seyed Kamal Kazemitabar
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Seyed Hamidreza Hashemi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari 4818166996, Iran;
| | - Sahar Faraji
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Gianni Barcaccia
- Laboratory of Genomics for Breeding, DAFNAE, Campus of Agripolis, University of Padova, Legnaro, 35020 Padova, Italy;
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| |
Collapse
|
25
|
Faraji S, Ahmadizadeh M, Heidari P. Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa. Biometals 2021; 34:639-660. [PMID: 33783656 DOI: 10.1007/s10534-021-00301-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) as a bimetal plays critical roles in biochemical processes, membrane stability, and enzyme activity. Mg transporters (MGTs) are involving in maintaining Mg homeostasis in cells. Although the MGT family members have been identified in different plant species, there is no comprehensive analysis of the other plants' MGT genes. In the current study, 62 and 41 non-redundant putative MGT proteins were recognized into the genome of Camelina sativa, and Triticum turgidum and they were compared based on physicochemical properties, protein structure, expression, and interaction. All identified MGTs were classified into three subgroups, NIPA, CorA, and MRS2/MGT, based on conserved-motifs distribution. The results showed that the secondary structure pattern in NIPA and MRS2 subfamily members in both studied plant species were highly similar. Furthermore, MGTs encompass the conserved structures and the critical sites mainly in the metal ion and Mg2+ binding centers as well as the catalytic sites were observed. The highest numbers of protein channels were predicted in CorA proteins in both C. sativa and T. turgidum with 24 and 17 channel numbers, respectively. The Ser, Pro, Gly, Lys, Tyr, and Arg amino acids were predicted as the binding residues in MGTs channel regions. The expression pattern of identified genes demonstrated that MGT genes have diverse tissue-specific expression and stress response expression patterns. Besides, 147 co-expressed genes with MGTs were clustered into the eight co-expression nodes involved in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, carbon metabolism, biosynthesis of amino acids, and endocytosis. In the present study, all interpretations are based on in silico predictions, which can be used in further studies related to functional genomics of MGT genes.
Collapse
Affiliation(s)
- Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University (SANRU), 4818168984, Sari, Iran
| | | | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
26
|
Interactomes: Experimental and In Silico Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:107-117. [DOI: 10.1007/978-3-030-80352-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Singh G, Singh V, Singh V. Genome-wide interologous interactome map (TeaGPIN) of Camellia sinensis. Genomics 2020; 113:553-564. [PMID: 33002625 DOI: 10.1016/j.ygeno.2020.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/15/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022]
Abstract
Tea, prepared from the young leaves of Camellia sinensis, is a non-alcoholic beverage globally consumed due to its antioxidant properties, strong taste and aroma. Although, the genomic data of this medicinally and commercially important plant is available, studies related to its sub-cellular interactomic maps are less explored. In this work, we propose a genome-wide interologous protein-protein interaction (PPI) network of tea, termed as TeaGPIN, consisting of 12,033 nodes and 216,107 interactions, developed using draft genome of tea and known PPIs exhaustively collected from 49 template plants. TeaGPIN interactions are prioritized using domain-domain interactions along with the interolog information. A high-confidence TeaGPIN consisting of 5983 nodes and 58,867 edges is reported and its interactions are further evaluated using protein co-localization similarities. Based on three network centralities (degree, betweenness and eigenvector), 1302 key proteins are reported in tea to have p-value <0.01 by comparing the TeaGPIN with 10,000 realizations of Erdős-Rényi and Barabási-Albert based corresponding random network models. Functional content of TeaGPIN is assessed using KEGG and GO annotations and its modular architecture is explored. Network based characterization is carried-out on the transcription factors, and proteins involved flavonoid biosynthesis and photosynthesis pathways to find novel candidates involved in various regulatory processes. We believe the proposed TeaGPIN will impart useful insights in understanding various mechanisms related to growth and development as well as defence against biotic and abiotic perturbations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India.
| |
Collapse
|
28
|
Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Gene 2020; 764:145078. [PMID: 32858175 DOI: 10.1016/j.gene.2020.145078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/05/2023]
Abstract
In maize, eat rot and stalk rot caused by Fusarium verticillioides and Fusarium graminearum lead to contamination of moldy grains to produce mycotoxins. Identification of resistance genes against these pathogens for maize breeding is an effective way for disease control. Several 2-oxoglutarate-dependent dioxygenase (2OGD) proteins have been found to confer resistance to different pathogens in diverse plant species. However, little is known about the 2OGD superfamily in maize. Here, we identified 103 putative 2OGD genes in maize from a genome-wide analysis, and divided them into three classes - DOXA, DOXB, and DOXC. We further comprehensively investigated their gene structure, chromosome distribution, phylogenetic tree, gene-function enrichment, and expression profiles among different tissues. The genes encoding three 2OGD proteins, ACO, F3H, and NCS involved in ethylene biosynthesis, flavonoids biosynthesis, and alkaloids biosynthesis pathways, respectively, were identified to be induced by F. verticillioides and F. graminearum. The promoters of the three genes contain the binding sites for the transcription factor ZmDOF and ZmHSF, which are also induced by the two pathogens. The results imply that the three 2OGDs and the two transcription factors might be involved in the resistance to the two pathogens. This study provided a comprehensive understanding of the 2OGD superfamily in maize and laid the foundation for the further functional analysis of their roles in maize resistance to eat rot and stalk rot.
Collapse
|
29
|
Carianopol CS, Chan AL, Dong S, Provart NJ, Lumba S, Gazzarrini S. An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun Biol 2020; 3:145. [PMID: 32218501 PMCID: PMC7099082 DOI: 10.1038/s42003-020-0866-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Yeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5′ AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress. Carianopol et al. construct a detailed protein interaction network for the SnRK1 kinase complex to investigate the interaction of SnRK1 and ABA during stress response. They identify 125 proteins that interact with SnRK1, which can be used further to characterise the role of SnRK1 in plant survival under stress.
Collapse
Affiliation(s)
- Carina Steliana Carianopol
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Aaron Lorheed Chan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Shaowei Dong
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.,Centre for the Analysis of Genome Evolution and Function, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada. .,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
30
|
Singh V, Singh G, Singh V. TulsiPIN: An Interologous Protein Interactome of Ocimum tenuiflorum. J Proteome Res 2020; 19:884-899. [PMID: 31789043 DOI: 10.1021/acs.jproteome.9b00683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ocimum tenuiflorum, commonly known as holy basil or tulsi, is globally recognized for its multitude of medicinal properties. However, a comprehensive study revealing the complex interplay among its constituent proteins at subcellular level is still lacking. To bridge this gap, in this work, a genome-scale interologous protein-protein interaction (PPI) network, TulsiPIN, is developed using 36 template plants, which consists of 13 660 nodes and 327 409 binary interactions. A high confidence network, hc-TulsiPIN, consisting of 7719 nodes having 95 532 interactions is inferred using domain-domain interaction information along with interolog-based statistics, and its reliability is assessed using pathway enrichment, functional homogeneity, and protein colocalization of PPIs. Examination of topological features revealed that hc-TulsiPIN possesses conventional properties, like small-world, scale-free, and modular architecture. A total of 1625 vital proteins are predicted by statistically evaluating hc-TulsiPIN with two ensembles of corresponding random networks, each consisting of 10 000 realizations of Erdoős-Rényi and Barabási-Albert models. Also, numerous regulatory proteins like transcription factors, transcription regulators, and protein kinases are profiled. Using 36 guide genes participating in 9 secondary metabolite biosynthetic pathways, a subnetwork consisting of 171 proteins and 612 interactions was constructed, and 127 of these proteins could be successfully characterized. Detailed information of TulsiPIN is available at https://cuhpcbbtulsipin.shinyapps.io/tulsipin_v0/ .
Collapse
Affiliation(s)
- Vikram Singh
- Centre for Computational Biology and Bioinformatics , Central University of Himahcal Pradesh , Dharamshala 176206 , India
| | - Gagandeep Singh
- Centre for Computational Biology and Bioinformatics , Central University of Himahcal Pradesh , Dharamshala 176206 , India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics , Central University of Himahcal Pradesh , Dharamshala 176206 , India
| |
Collapse
|
31
|
Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform 2019; 21:1857-1874. [PMID: 32706024 DOI: 10.1093/bib/bbz132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yijun Meng
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Tian Xie
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China
| |
Collapse
|
32
|
Singh G, Singh V, Singh V. Construction and analysis of an interologous protein-protein interaction network of Camellia sinensis leaf (TeaLIPIN) from RNA-Seq data sets. PLANT CELL REPORTS 2019; 38:1249-1262. [PMID: 31197449 DOI: 10.1007/s00299-019-02440-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
An interologous PPI network of tea leaf is designed by developing reference transcriptome assembly and using experimentally validated PPIs in plants. Key regulatory proteins are proposed and potential TFs are predicted. Worldwide, tea (Camellia sinensis) is the most consumed beverage primarily due to the taste, flavour, and aroma of its newly formed leaves; and has been used as an important ingredient in several traditional medicinal systems because of its antioxidant properties. For this medicinally and commercially important plant, design principles of gene-regulatory and protein-protein interaction (PPI) networks at sub-cellular level are largely un-characterized. In this work, we report a tea leaf interologous PPI network (TeaLIPIN) consisting of 11,208 nodes and 197,820 interactions. A reference transcriptome assembly was first developed from all the 44 samples of 6 publicly available leaf transcriptomes (1,567,288,290 raw reads). By inferring the high-confidence interactions among potential proteins coded by these transcripts using known experimental information about PPIs in 14 plants, an interologous PPI network was constructed and its modular architecture was explored. Comparing this network with 10,000 realizations of two types of corresponding random networks (Erdős-Rényi and Barabási-Albert models) and examining over three network centrality metrics, we predict 2750 bottleneck proteins (having p values < 0.01). 247 of these are deduced to have transcription factor domains by in-house developed HMM models of known plant TFs and these were also mapped to the draft tea genome for searching their probable loci of origin. Co-expression analysis of the TeaLIPIN proteins was also performed and top ranking modules are elaborated. We believe that the proposed novel methodology can easily be adopted to develop and explore the PPI interactomes in other plant species by making use of the available transcriptomic data.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
33
|
McBride Z, Chen D, Lee Y, Aryal UK, Xie J, Szymanski DB. A Label-free Mass Spectrometry Method to Predict Endogenous Protein Complex Composition. Mol Cell Proteomics 2019; 18:1588-1606. [PMID: 31186290 PMCID: PMC6683005 DOI: 10.1074/mcp.ra119.001400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Information on the composition of protein complexes can accelerate mechanistic analyses of cellular systems. Protein complex composition identifies genes that function together and provides clues about regulation within and between cellular pathways. Cytosolic protein complexes control metabolic flux, signal transduction, protein abundance, and the activities of cytoskeletal and endomembrane systems. It has been estimated that one third of all cytosolic proteins in leaves exist in an oligomeric state, yet the composition of nearly all remain unknown. Subunits of stable protein complexes copurify, and combinations of mass-spectrometry-based protein correlation profiling and bioinformatic analyses have been used to predict protein complex subunits. Because of uncertainty regarding the power or availability of bioinformatic data to inform protein complex predictions across diverse species, it would be highly advantageous to predict composition based on elution profile data alone. Here we describe a mass spectrometry-based protein correlation profiling approach to predict the composition of hundreds of protein complexes based on biochemical data. Extracts were obtained from an intact organ and separated in parallel by size and charge under nondenaturing conditions. More than 1000 proteins with reproducible elution profiles across all replicates were subjected to clustering analyses. The resulting dendrograms were used to predict the composition of known and novel protein complexes, including many that are likely to assemble through self-interaction. An array of validation experiments demonstrated that this new method can drive protein complex discovery, guide hypothesis testing, and enable systems-level analyses of protein complex dynamics in any organism with a sequenced genome.
Collapse
Affiliation(s)
- Zachary McBride
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Donglai Chen
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Youngwoo Lee
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Uma K Aryal
- ¶Purdue Proteomics Facility, Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Jun Xie
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Daniel B Szymanski
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana; ‖Department of Biological Sciences,Purdue University, West Lafayette, Indiana.
| |
Collapse
|
34
|
Zhao J, Lei Y, Hong J, Zheng C, Zhang L. AraPPINet: An Updated Interactome for the Analysis of Hormone Signaling Crosstalk in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:870. [PMID: 31333706 PMCID: PMC6625390 DOI: 10.3389/fpls.2019.00870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/18/2019] [Indexed: 05/29/2023]
Abstract
Protein-protein interactions (PPIs) play fundamental roles in various cellular processes. Here, we present a new version of computational interactome that contains more than 345,000 predicted PPIs involving about 51.2% of the Arabidopsis proteins. Compared to the earlier version, the updated AraPPINet displays a higher accuracy in predicting protein interactions through performance evaluation with independent datasets. In addition to the experimental verifications of the previous version, the new version has been subjected to further validation test that demonstrates its ability to discover novel PPIs involved in hormone signaling pathways. Moreover, network analysis shows that many overlapping proteins are significantly involved in the interactions which mediated the crosstalk among plant hormones. The new version of AraPPINet provides a more reliable interactome which would facilitate the understanding of crosstalk among hormone signaling pathways in plants.
Collapse
|
35
|
Gilbert M, Schulze WX. Global Identification of Protein Complexes within the Membrane Proteome of Arabidopsis Roots Using a SEC-MS Approach. J Proteome Res 2018; 18:107-119. [PMID: 30370772 DOI: 10.1021/acs.jproteome.8b00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biological processes consist of several consecutive and interacting steps as, for example, in signal transduction cascades or metabolic reaction chains. These processes are regulated by protein-protein interactions and the formation of larger protein complexes, which also occur within biological membranes. To gain a large-scale overview of complex-forming proteins and the composition of such complexes within the cellular membranes of Arabidopsis roots, we use the combination of size-exclusion chromatography and mass spectrometry. First, we identified complex-forming proteins by a retention shift analysis relative to expected retention times of monomeric proteins during size-exclusion chromatography. In a second step we predicted complex composition through pairwise correlation of elution profiles. As result we present an interactome of 963 proteins within cellular membranes of Arabidopsis roots. Identification of complex-forming proteins was highly robust between two independently grown root proteomes. The protein complex composition derived from pairwise correlations of coeluting proteins reproducibly identified stable protein complexes (ribosomes, proteasome, mitochondrial respiratory chain supercomplexes) but showed higher variance between replicates regarding transient interactions (e.g., interactions with kinases) within membrane protein complexes.
Collapse
Affiliation(s)
- Max Gilbert
- Department of Plant Systems Biology , Universität Hohenheim , 70593 Stuttgart , Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology , Universität Hohenheim , 70593 Stuttgart , Germany
| |
Collapse
|
36
|
Liu S, Yu F, Hu Q, Wang T, Yu L, Du S, Yu W, Li N. Development of in Planta Chemical Cross-Linking-Based Quantitative Interactomics in Arabidopsis. J Proteome Res 2018; 17:3195-3213. [DOI: 10.1021/acs.jproteome.8b00320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shichang Liu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tingliang Wang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lujia Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
37
|
Di Silvestre D, Bergamaschi A, Bellini E, Mauri P. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World. Proteomes 2018; 6:proteomes6020027. [PMID: 29865292 PMCID: PMC6027444 DOI: 10.3390/proteomes6020027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022] Open
Abstract
The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Andrea Bergamaschi
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Edoardo Bellini
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - PierLuigi Mauri
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| |
Collapse
|
38
|
Liu TY, Chou WC, Chen WY, Chu CY, Dai CY, Wu PY. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:426-438. [PMID: 29451720 DOI: 10.1111/tpj.13874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Chun Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Yuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Yi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chen-Yi Dai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Yu Wu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
39
|
Yuan S, Li X, Li R, Wang L, Zhang C, Chen L, Hao Q, Zhang X, Chen H, Shan Z, Yang Z, Chen S, Qiu D, Ke D, Zhou X. Genome-Wide Identification and Classification of Soybean C2H2 Zinc Finger Proteins and Their Expression Analysis in Legume-Rhizobium Symbiosis. Front Microbiol 2018; 9:126. [PMID: 29467740 PMCID: PMC5807899 DOI: 10.3389/fmicb.2018.00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Root nodule symbiosis (RNS) is one of the most productive and economical systems for nitrogen fixation, and previous studies have shown that several nodule-specific C2H2-zinc finger proteins (ZFPs) play important roles in symbiosis establishment and nodule function. However, C2H2-ZFPs are the most widespread ZFPs in eukaryotes, and a great variation of structure and function exist among the family members. It remains largely unclear whether or not special types of C2H2-ZF genes participate in symbiosis, especially in soybean. In the present study, we performed a genome-wide survey of soybean C2H2-ZF genes, and 321 soybean C2H2-ZF genes were identified and classified into 11 clearly distinguishable subsets (Gm-t1-SF, Gm-t2-SF, Gm-1i-Q-SF, Gm-1i-M-SF, Gm-1i-Z-SF, Gm-1i-D-SF, Gm-2i-Q-SF, Gm-2i-M-SF, Gm-2i-Mix-SF, Gm-3i-SF, and Gm-4i-SF) based on the arrangements, numbers, and types of C2H2-ZF domains. Phylogenetic and gene ontology analyses were carried out to assess the conserved sequence and GO function among these subsets, and the results showed that the classification of soybean C2H2-ZFPs was reasonable. The expression profile of soybean C2H2-ZFPs in multiple tissues showed that nearly half of soybean C2H2-ZFPs within different subsets had expressions in nodules, including a clustering branch consisting of 11 Gm-1i-Q-SF genes specifically expressed in symbiotic-relative tissues. RNA-Seq was used to identify symbiosis-related soybean C2H2-ZFPs, and the expression pattern of the soybean C2H2-ZFPs in roots and nodules at different development stages showed that soybean C2H2-ZFPs mainly played roles in nodule development or nodule function rather than nodulation signal transduction, and nearly half of these genes had high expressions and/or different expression patterns during soybean nodule development, especially for the six clustering branches of genes consisting of different subsets of C2H2-ZFPs. Furthermore, the selected symbiosis-related soybean C2H2-ZFPs might function in legume-rhizobium symbiosis through regulating or interacting with other key proteins. Taken together, our findings provided useful information for the study on classification and conservative function of C2H2-ZFPs, and offered solid evidence for investigation of rhizobium symbiosis-related C2H2-ZFPs in soybean or other legumes.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xiangyong Li
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Lei Wang
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Danxia Ke
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
40
|
Vandereyken K, Van Leene J, De Coninck B, Cammue BPA. Hub Protein Controversy: Taking a Closer Look at Plant Stress Response Hubs. FRONTIERS IN PLANT SCIENCE 2018; 9:694. [PMID: 29922309 PMCID: PMC5996676 DOI: 10.3389/fpls.2018.00694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
Plant stress responses involve numerous changes at the molecular and cellular level and are regulated by highly complex signaling pathways. Studying protein-protein interactions (PPIs) and the resulting networks is therefore becoming increasingly important in understanding these responses. Crucial in PPI networks are the so-called hubs or hub proteins, commonly defined as the most highly connected central proteins in scale-free PPI networks. However, despite their importance, a growing amount of confusion and controversy seems to exist regarding hub protein identification, characterization and classification. In order to highlight these inconsistencies and stimulate further clarification, this review critically analyses the current knowledge on hub proteins in the plant interactome field. We focus on current hub protein definitions, including the properties generally seen as hub-defining, and the challenges and approaches associated with hub protein identification. Furthermore, we give an overview of the most important large-scale plant PPI studies of the last decade that identified hub proteins, pointing out the lack of overlap between different studies. As such, it appears that although major advances are being made in the plant interactome field, defining hub proteins is still heavily dependent on the quality, origin and interpretation of the acquired PPI data. Nevertheless, many hub proteins seem to have a reported role in the plant stress response, including transcription factors, protein kinases and phosphatases, ubiquitin proteasome system related proteins, (co-)chaperones and redox signaling proteins. A significant number of identified plant stress hubs are however still functionally uncharacterized, making them interesting targets for future research. This review clearly shows the ongoing improvements in the plant interactome field but also calls attention to the need for a more comprehensive and precise identification of hub proteins, allowing a more efficient systems biology driven unraveling of complex processes, including those involved in stress responses.
Collapse
Affiliation(s)
- Katy Vandereyken
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Division of Crop Biotechnics, KU Leuven, Heverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Bruno P. A. Cammue
| |
Collapse
|
41
|
Jarillo JA, Komar DN, Piñeiro M. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions. Methods Mol Biol 2018; 1794:323-334. [PMID: 29855969 DOI: 10.1007/978-1-4939-7871-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-hybrid systems allow for the identification of proteins that physically interact in the context of biological processes. In the cases where these proteins interact with DNA it is essential to define their binding properties with specific regions of the genome to shed light on the intricate gene regulatory networks that modulate the biological response of interest. The chromatin immunoprecipitation (ChIP) protocol described here provides a powerful means to identify the DNA-binding sites of transcription factors, proteins involved in chromatin remodeling processes, or histone marks that modulate gene expression in eukaryotes and specifically in plants like the model species Arabidopsis thaliana. This procedure involves the in vivo fixation of protein-DNA complexes, the physical fragmentation of chromatin with ultrasounds, the specific immunoprecipitation of protein-DNA complexes, and the use of quantitative PCR techniques for the relative quantification of the DNA sequences associated with the proteins of study. This valuable methodology has contributed significantly to a better understanding of the gene expression regulatory mechanisms underlying the control of a variety of biological processes in Arabidopsis.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| | - Dorota N Komar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| |
Collapse
|
42
|
Bassard JE, Halkier BA. How to prove the existence of metabolons? PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:211-227. [PMID: 29755303 PMCID: PMC5932110 DOI: 10.1007/s11101-017-9509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/19/2017] [Indexed: 05/21/2023]
Abstract
Sequential enzymes in biosynthetic pathways are organized in metabolons. It is challenging to provide experimental evidence for the existence of metabolons as biosynthetic pathways are composed of highly dynamic protein-protein interactions. Many different methods are being applied, each with strengths and weaknesses. We will present and evaluate several techniques that have been applied in providing evidence for the orchestration of the biosynthetic pathways of cyanogenic glucosides and glucosinolates in metabolons. These evolutionarily related pathways have ER-localized cytochromes P450 that are proposed to function as anchoring site for assembly of the enzymes into metabolons. Additionally, we have included commonly used techniques, even though they have not been used (yet) on these two pathways. In the review, special attention will be given to less-exploited fluorescence-based methods such as FCS and FLIM. Ultimately, understanding the orchestration of biosynthetic pathways may contribute to successful engineering in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity”, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Haag S, Schindler M, Berndt L, Brennicke A, Takenaka M, Weber G. Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9. Nucleic Acids Res 2017; 45:4915-4928. [PMID: 28201607 PMCID: PMC5416752 DOI: 10.1093/nar/gkx099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
In flowering plant plastids and mitochondria, multiple organellar RNA editing factor (MORF/RIP) proteins are required at most sites for efficient C to U RNA editing catalyzed by the RNA editosome. MORF proteins harbor a conserved stretch of residues (MORF-box), form homo- and heteromers and interact with selected PPR (pentatricopeptide repeat) proteins, which recognize each editing site. The molecular function of the MORF-box remains elusive since it shares no sequence similarity with known domains. We determined structures of the A. thaliana mitochondrial MORF1 and chloroplast MORF9 MORF-boxes which both adopt a novel globular fold (MORF domain). Our structures state a paradigmatic model for MORF domains and their specific dimerization via a hydrophobic interface. We cross-validate the interface by yeast two-hybrid studies and pulldown assays employing structure-based mutants. We find a structural similarity of the MORF domain to an N-terminal ferredoxin-like domain (NFLD), which confers RNA substrate positioning in bacterial 4-thio-uracil tRNA synthetases, implying direct RNA contacts of MORF proteins during RNA editing. With the MORF1 and MORF9 structures we elucidate a yet unknown fold, corroborate MORF interaction studies, validate the mechanism of MORF multimerization by structure-based mutants and pave the way towards a complete structural characterization of the plant RNA editosome.
Collapse
Affiliation(s)
- Sascha Haag
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Magdalena Schindler
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Leona Berndt
- Universität Greifswald, Institut für Biochemie, Molekulare Strukturbiologie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | | | | - Gert Weber
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Franz-Oberdorf K, Langer A, Strasser R, Isono E, Ranftl QL, Wunschel C, Schwab W. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: Interaction of Fra a 1 proteins and FaAP. Proteins 2017; 85:1891-1901. [DOI: 10.1002/prot.25343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Katrin Franz-Oberdorf
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan Technische Universität München; 85354 Freising Germany
| | - Andreas Langer
- Dynamic Biosensors GmbH; Lochhamerstr. 15 82152 Planegg Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH; Lochhamerstr. 15 82152 Planegg Germany
| | - Erika Isono
- Department of Plant Systems Biology; Technische Universität München; 85354 Freising Germany
| | - Quirin L. Ranftl
- Department of Plant Systems Biology; Technische Universität München; 85354 Freising Germany
| | - Christian Wunschel
- Department of Botany; Technische Universität München; 85354 Freising Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan Technische Universität München; 85354 Freising Germany
| |
Collapse
|
45
|
HpaB-Dependent Secretion of Type III Effectors in the Plant Pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria. Sci Rep 2017; 7:4879. [PMID: 28687734 PMCID: PMC5501821 DOI: 10.1038/s41598-017-04853-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023] Open
Abstract
Plant pathogenic bacteria exerts their pathogenicity through the injection of large repertoires of type III effectors (T3Es) into plant cells, a mechanism controlled in part by type III chaperones (T3Cs). In Ralstonia solanacearum, the causal agent of bacterial wilt, little is known about the control of type III secretion at the post-translational level. Here, we provide evidence that the HpaB and HpaD proteins do act as bona fide R. solanacearum class IB chaperones that associate with several T3Es. Both proteins can dimerize but do not interact with each other. After screening 38 T3Es for direct interactions, we highlighted specific and common interacting partners, thus revealing the first picture of the R. solanacearum T3C-T3E network. We demonstrated that the function of HpaB is conserved in two phytopathogenic bacteria, R. solanacearum and Xanthomonas campestris pv. vesicatoria (Xcv). HpaB from Xcv is able to functionally complement a R. solanacearum hpaB mutant for hypersensitive response elicitation on tobacco plants. Likewise, Xcv is able to translocate a heterologous T3E from R. solanacearum in an HpaB-dependent manner. This study underlines the central role of the HpaB class IB chaperone family and its potential contribution to the bacterial plasticity to acquire and deliver new virulence factors.
Collapse
|
46
|
Xiong G, Liu X, Qiu P, Wu X, Du Z, Zhang J, Yang L, Wu Z. Rice grassy stunt virus p5 interacts with two protein components of the plant-specific CBL-CIPK Ca +2 signaling network of rice. Virus Genes 2017; 53:446-453. [PMID: 28213698 DOI: 10.1007/s11262-017-1437-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Rice grassy stunt virus (RGSV) is a tenuivirus posing a threat to rice production in many South, Southeast, and East Asian countries. To date, no host factor interacting with RGSV has been reported. In this study, we screened a rice cDNA library with the GAL4-based yeast two-hybrid system using RGSV p5 as the bait. One of the candidate host factors interacting with RGSV p5 was found to be CBL-interacting protein kinase 25 (OsCIPK25), a member of the plant-specific CBL-CIPK Ca2+ signaling network. The interaction between RGSV p5 and OsCIPK25, as well as OsCIPK5, which is closely related to OsCIPK25, was confirmed by their cellular co-localization and by a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Given the importance of CIPKs in the regulation of ion homeostasis and the resemblance of RGSV symptoms to potassium deficiency in rice, we evaluated potassium content of RGSV-infected rice and found it to be much lower than that in the healthy rice.
Collapse
Affiliation(s)
- Guihong Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaojuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoyong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
47
|
Bayer-Császár E, Haag S, Jörg A, Glass F, Härtel B, Obata T, Meyer EH, Brennicke A, Takenaka M. The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:813-828. [PMID: 28549935 DOI: 10.1016/j.bbagrm.2017.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 11/15/2022]
Abstract
In plant organelles specific nucleotide motifs at C to U RNA editing sites are recognized by the PLS-class of pentatricopeptide repeat (PPR) proteins, which are additionally characterized by a C-terminal E domain. The PPR elements bind the nucleotides in the target RNA, while the function of the E domain has remained unknown. At most sites RNA editing also requires multiple organellar RNA editing factor (MORF) proteins. To understand how these two types of proteins are involved in RNA editing complexes, we systematically analyzed their protein-protein interactions. In vivo pull-down and yeast two-hybrid assays show that MORF proteins connect with selected PPR proteins. In a loss of function mutant of MORF1, a single amino acid alteration in the conserved MORF domain abrogates interactions with many PLS-class PPR proteins, implying the requirement of direct interaction to PPR proteins for the RNA editing function of MORF1. Subfragment analyses show that predominantly the N-terminal/central regions of the MORF domain in MORF1 and MORF3 bind the PPR proteins. Within the PPR proteins, the E domains in addition to PPR elements contact MORF proteins. In chimeric PPR proteins, different E domains alter the specificity of the interaction with MORF proteins. The selective interactions between E domain containing PPR and MORF proteins suggest that the E domains and MORF proteins play a key role for specific protein complexes to assemble at different RNA editing sites.
Collapse
Affiliation(s)
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | | | | |
Collapse
|
48
|
Koda S, Onda Y, Matsui H, Takahagi K, Uehara-Yamaguchi Y, Shimizu M, Inoue K, Yoshida T, Sakurai T, Honda H, Eguchi S, Nishii R, Mochida K. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2017; 8:2055. [PMID: 29234348 PMCID: PMC5712366 DOI: 10.3389/fpls.2017.02055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/16/2017] [Indexed: 05/08/2023]
Abstract
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Collapse
Affiliation(s)
- Satoru Koda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | | | - Kotaro Takahagi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Minami Shimizu
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Hiroshi Honda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Shinto Eguchi
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Ryuei Nishii
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| |
Collapse
|
49
|
Takabayashi A, Takabayashi S, Takahashi K, Watanabe M, Uchida H, Murakami A, Fujita T, Ikeuchi M, Tanaka A. PCoM-DB Update: A Protein Co-Migration Database for Photosynthetic Organisms. PLANT & CELL PHYSIOLOGY 2017; 58:e10. [PMID: 28011869 DOI: 10.1093/pcp/pcw219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 05/29/2023]
Abstract
The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- CREST, JST, Kita-ku, Sapporo, Japan
| | - Saeka Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Public Health, Graduate School of Medicine Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kaori Takahashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mai Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, Awaji, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, Awaji, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060-0810, Japan Tokyo, Tokyo, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- CREST, JST, Kita-ku, Sapporo, Japan
| |
Collapse
|
50
|
Zanetti ME, Rípodas C, Niebel A. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:645-654. [PMID: 27939756 DOI: 10.1016/j.bbagrm.2016.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
NF-Ys are heterotrimeric transcription factors composed by the NF-YA, NF-YB and NF-YC subunits. In plants, NF-Y subunits are encoded by multigene families whose members show structural and functional diversifications. An increasing number of NF-Y genes has been shown to play key roles during different stages of root nodule and arbuscular mycorrhizal symbiosis, as well as during the interaction of plants with pathogenic microorganisms. Individual members of the NF-YA and NF-YB families have also been implicated in the development of primary and lateral roots. In addition, different members of the NF-YA and NF-YB gene families from mono- and di-cotyledonous plants have been involved in plant responses to water and nutrient scarcity. This review presents the most relevant and striking results concerning these NF-Y subunits. A phylogenetic analysis of the functionally characterized NF-Y genes revealed that, across plant species, NF-Y proteins functioning in the same biological process tend to belong to common phylogenetic groups. Finally, we discuss the forthcoming challenges of plant NF-Y research, including the detailed dissection of expression patterns, the elucidation of functional specificities as well as the characterization of the potential NF-Y-mediated epigenetic mechanisms by which they control the expression of their target genes. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, calle 115 y 49 s/n, CP 1900, La Plata, Argentina.
| | - Carolina Rípodas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre, National de la Recherche Scientifique, 31326 Castanet-Tolosan, France
| | - Andreas Niebel
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre, National de la Recherche Scientifique, 31326 Castanet-Tolosan, France.
| |
Collapse
|