1
|
Pongkulapa T, Yum JH, McLoughlin CD, Conklin B, Kumagai T, Goldston LL, Sugiyama H, Park S, Lee KB. NIR-Induced Photoswitching Hybrid DNA Nanoconstruct-Based Drug Delivery System for Spatiotemporal Control of Stem Cell Fate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409530. [PMID: 40007062 DOI: 10.1002/smll.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Precise spatiotemporal control of drug delivery is extremely valuable for regulating stem cell fate, particularly in stem cell differentiation. A novel near-infrared (NIR)-mediated spatiotemporal delivery system is reported combining photo-switchable arylazopyrazole (AAP)-containing DNA strands and upconversion nanoparticles (UCNPs). This nano-drug delivery system (NDDS) enables precise modulation of DNA duplex structures in response to NIR stimuli, overcoming the limitations of traditional UV-responsive systems. AAP derivatives with enhanced photoswitching efficiency (≈98%) and significantly improved cis-form stability are engineered. The successful delivery of curcumin, a neurogenic compound with an affinity for the minor groove of DNA, to human neural stem cells (NSCs) is achieved using UCNP-DNA-AAP constructs. Upon 980 nm NIR light exposure, UCNPs efficiently up-converted NIR to UV light, triggering AAP photoisomerization and DNA dissociation, thus releasing curcumin. This approach enabled efficient spatiotemporal control over NSC differentiation while facilitating neuroprotection. Immunofluorescence and gene expression analyses demonstrated enhanced neuronal mRNA levels and neurite outgrowth in treated cells. In short, the NIR-mediated photo-switchable NDDS offers a precise and innovative approach to control stem cell fate, enabling spatiotemporal regulation of cellular processes. This technology has significant potential applications in nanomedicine and neuroscience, where precise drug delivery is crucial for targeted neural interventions.
Collapse
Affiliation(s)
- Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Callan D McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
2
|
Faruqui N, Williams DS, Briones A, Kepiro IE, Ravi J, Kwan TO, Mearns-Spragg A, Ryadnov MG. Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™. Mater Today Bio 2023; 22:100786. [PMID: 37692377 PMCID: PMC10491728 DOI: 10.1016/j.mtbio.2023.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.
Collapse
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E. Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Tristan O.C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
3
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
4
|
Cuvelier M, Vangheel J, Thiels W, Ramon H, Jelier R, Smeets B. Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans. Biophys J 2023; 122:1858-1867. [PMID: 37085996 PMCID: PMC10209142 DOI: 10.1016/j.bpj.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.
Collapse
Affiliation(s)
- Maxim Cuvelier
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| | - Jef Vangheel
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Wim Thiels
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Herman Ramon
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Rob Jelier
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Bart Smeets
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering Approaches for the Advanced Organoid Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007949. [PMID: 34561899 PMCID: PMC8682947 DOI: 10.1002/adma.202007949] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Indexed: 05/09/2023]
Abstract
Recent advances in 3D cell culture technology have enabled scientists to generate stem cell derived organoids that recapitulate the structural and functional characteristics of native organs. Current organoid technologies have been striding toward identifying the essential factors for controlling the processes involved in organoid development, including physical cues and biochemical signaling. There is a growing demand for engineering dynamic niches characterized by conditions that resemble in vivo organogenesis to generate reproducible and reliable organoids for various applications. Innovative biomaterial-based and advanced engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of organoid research. The recent advances in organoid engineering, including extracellular matrices and genetic modulation, are comprehensively summarized to pinpoint the parameters critical for organ-specific patterning. Moreover, perspective trends in developing tunable organoids in response to exogenous and endogenous cues are discussed for next-generation developmental studies, disease modeling, and therapeutics.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Wang X, Harrison A. A general principle for spontaneous genetic symmetry breaking and pattern formation within cell populations. J Theor Biol 2021; 526:110809. [PMID: 34119496 DOI: 10.1016/j.jtbi.2021.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Elements within biological systems interact and frequently self-organize from initially disordered states into highly structured patterns. The local self-activation and lateral inhibition mechanism, derived from the coupling between two reacting and diffusing chemicals, has been believed to be one of the main causes for biological pattern formation. Graded positional information can be produced by the limited diffusion of one single signaling molecule through cell populations with no pre-patterns being required. We demonstrate, using multiscale computations, that spontaneous symmetry breaking can be driven within expanding and non-expanding cell populations, without local self-enhancement of activators and long-range inhibition. Instead, cells can self-organize into structured gene patterns via a combination of timing gene expression in cells and the graded positional information which has been coupled to the gene expression. We show that the genetic symmetry breaking in expanding E. coli populations occurs at a critical colony size, which is independent of the cell doubling time but scales with the diffusion speed of the signaling molecule. We also show the quasi-3D structure of gene patterns, and observe that the wave length of periodic genetic stripes is in proportion to the genetic oscillation cycle time and in inverse proportion to cell doubling time. Our results provide insights into relevant biological development processes.
Collapse
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
7
|
Wang X, Bai D. Self‐Organization Principles of Cell Cycles and Gene Expressions in the Development of Cell Populations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences Zhejiang University Hangzhou 310058 China
- School of Physical Sciences University of Science and Technology of China Hefei 230026 China
| | - Dongyun Bai
- School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
8
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
9
|
Zhang Y, Wiesholler LM, Rabie H, Jiang P, Lai J, Hirsch T, Lee KB. Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40031-40041. [PMID: 32805826 DOI: 10.1021/acsami.0c10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-mediated remote control of stem cell fate, such as proliferation, differentiation, and migration, can bring a significant impact on stem cell biology and regenerative medicine. Current UV/vis-mediated control approaches are limited in terms of nonspecific absorption, poor tissue penetration, and phototoxicity. Upconversion nanoparticle (UCNP)-based near-infrared (NIR)-mediated control systems have gained increasing attention for vast applications with minimal nonspecific absorption, good penetration depth, and minimal phototoxicity from NIR excitations. Specifically, 808 nm NIR-responsive upconversion nanomaterials have shown clear advantages for biomedical applications owing to diminished heating effects and better tissue penetration. Herein, a novel 808 nm NIR-mediated control method for stem cell differentiation has been developed using multishell UCNPs, which are optimized for upconverting 808 nm NIR light to UV emission. The locally generated UV emissions further toggle photoswitching polymer capping ligands to achieve spatiotemporally controlled small-molecule release. More specifically, with 808 nm NIR excitation, stem cell differentiation factors can be released to guide neural stem cell (NSC) differentiation in a highly controlled manner. Given the challenges in stem cell behavior control, the developed 808 nm NIR-responsive UCNP-based approach to control stem cell differentiation can represent a new tool for studying single-molecule roles in stem cell and developmental biology.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Hudifah Rabie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Pengfei Jiang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jinping Lai
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Huang X, Hu Q, Lai Y, Morales DP, Clegg DO, Reich NO. Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10732-10737. [PMID: 27787919 DOI: 10.1002/adma.201603318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Yifan Lai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Demosthenes P Morales
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|