1
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Campbell K, Noël ES, Fletcher AG, Bulgakova NA. Contemporary morphogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190549. [DOI: 10.1098/rstb.2019.0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kyra Campbell
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Emily S. Noël
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Alexander G. Fletcher
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK
| | - Natalia A. Bulgakova
- Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Goranov V, Shelyakova T, De Santis R, Haranava Y, Makhaniok A, Gloria A, Tampieri A, Russo A, Kon E, Marcacci M, Ambrosio L, Dediu VA. 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering. Sci Rep 2020; 10:2289. [PMID: 32041994 PMCID: PMC7010825 DOI: 10.1038/s41598-020-58738-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
Collapse
Affiliation(s)
- V Goranov
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic.
| | - T Shelyakova
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Y Haranava
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Makhaniok
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - A Tampieri
- Institute of Science and Technology for Ceramics, CNR-ISTEC, Via Granarolo 64, 48018, Faenza, Italy
| | - A Russo
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - E Kon
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
- First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - M Marcacci
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - V A Dediu
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
4
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Kivanany PB, Grose KC, Yonet-Tanyeri N, Manohar S, Sunkara Y, Lam KH, Schmidtke DW, Varner VD, Petroll WM. An In Vitro Model for Assessing Corneal Keratocyte Spreading and Migration on Aligned Fibrillar Collagen. J Funct Biomater 2018; 9:jfb9040054. [PMID: 30248890 PMCID: PMC6306816 DOI: 10.3390/jfb9040054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Background: Corneal stromal cells (keratocytes) are responsible for developing and maintaining normal corneal structure and transparency, and for repairing the tissue after injury. Corneal keratocytes reside between highly aligned collagen lamellae in vivo. In addition to growth factors and other soluble biochemical factors, feedback from the extracellular matrix (ECM) itself has been shown to modulate corneal keratocyte behavior. Methods: In this study, we fabricate aligned collagen substrates using a microfluidics approach and assess their impact on corneal keratocyte morphology, cytoskeletal organization, and patterning after stimulation with platelet derived growth factor (PDGF) or transforming growth factor beta 1 (TGFβ). We also use time-lapse imaging to visualize the dynamic interactions between cells and fibrillar collagen during wound repopulation following an in vitro freeze injury. Results: Significant co-alignment between keratocytes and aligned collagen fibrils was detected, and the degree of cell/ECM co-alignment further increased in the presence of PDGF or TGFβ. Freeze injury produced an area of cell death without disrupting the collagen. High magnification, time-lapse differential interference contrast (DIC) imaging allowed cell movement and subcellular interactions with the underlying collagen fibrils to be directly visualized. Conclusions: With continued development, this experimental model could be an important tool for accessing how the integration of multiple biophysical and biochemical signals regulate corneal keratocyte differentiation.
Collapse
Affiliation(s)
- Pouriska B Kivanany
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kyle C Grose
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Nihan Yonet-Tanyeri
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sujal Manohar
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yukta Sunkara
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Hughes AJ, Miyazaki H, Coyle MC, Zhang J, Laurie MT, Chu D, Vavrušová Z, Schneider RA, Klein OD, Gartner ZJ. Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Dev Cell 2017; 44:165-178.e6. [PMID: 29290586 DOI: 10.1016/j.devcel.2017.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Many tissues fold into complex shapes during development. Controlling this process in vitro would represent an important advance for tissue engineering. We use embryonic tissue explants, finite element modeling, and 3D cell-patterning techniques to show that mechanical compaction of the extracellular matrix during mesenchymal condensation is sufficient to drive tissue folding along programmed trajectories. The process requires cell contractility, generates strains at tissue interfaces, and causes patterns of collagen alignment around and between condensates. Aligned collagen fibers support elevated tensions that promote the folding of interfaces along paths that can be predicted by modeling. We demonstrate the robustness and versatility of this strategy for sculpting tissue interfaces by directing the morphogenesis of a variety of folded tissue forms from patterns of mesenchymal condensates. These studies provide insight into the active mechanical properties of the embryonic mesenchyme and establish engineering strategies for more robustly directing tissue morphogenesis ex vivo.
Collapse
Affiliation(s)
- Alex J Hughes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Center for Cellular Construction, University of California, San Francisco, CA 94143, USA
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Maxwell C Coyle
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jesse Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Matthew T Laurie
- Department of Biochemistry and Molecular Biology, University of California, San Francisco, CA 94143, USA
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Center for Cellular Construction, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
8
|
Alobaidi AA, Sun B. Probing three-dimensional collective cancer invasion with DIGME. CANCER CONVERGENCE 2017; 1:1. [PMID: 29623954 PMCID: PMC5876692 DOI: 10.1186/s41236-017-0004-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multicellular pattern formation plays an important role in developmental biology, cancer metastasis and wound healing. While many physical factors have been shown to regulate these multicellular processes, the role of ECM micro-to-meso scale geometry has been poorly understood in 3D collective cancer invasion. RESULTS We have developed a mechanical-based strategy, Diskoid In Geometrically Micropatterned ECM (DIGME). DIGME allows easy engineering of the shape of 3D tissue organoid, the mesoscale ECM heterogeneity, and the fiber alignment of collagen-based ECM all at the same time. We have employed DIGME to study the 3D invasion of MDA-MB-231 diskoids in engineered collagen matrix. We find that the collective cancer invasion is closely regulated by the micro-to-meso scale geometry of the ECM. CONCLUSIONS We conclude that DIGME provides a simple yet powerful tool to probe 3D dynamics of tissue organoids in physically patterned microenvironments.
Collapse
Affiliation(s)
- Amani A. Alobaidi
- Department of Physics, Oregon State University, Weniger Hall, Corvallis, OR USA
| | - Bo Sun
- Department of Physics, Oregon State University, Weniger Hall, Corvallis, OR USA
| |
Collapse
|
9
|
Zurlo G, Truskinovsky L. Printing Non-Euclidean Solids. PHYSICAL REVIEW LETTERS 2017; 119:048001. [PMID: 29341729 DOI: 10.1103/physrevlett.119.048001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Geometrically frustrated solids with a non-Euclidean reference metric are ubiquitous in biology and are becoming increasingly relevant in technological applications. Often they acquire a targeted configuration of incompatibility through the surface accretion of mass as in tree growth or dam construction. We use the mechanics of incompatible surface growth to show that geometrical frustration developing during deposition can be fine-tuned to ensure a particular behavior of the system in physiological (or working) conditions. As an illustration, we obtain an explicit 3D printing protocol for arteries, which guarantees stress uniformity under inhomogeneous loading, and for explosive plants, allowing a complete release of residual elastic energy with a single cut. Interestingly, in both cases reaching the physiological target requires the incompatibility to have a topological (global) component.
Collapse
Affiliation(s)
- Giuseppe Zurlo
- School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland
| | - Lev Truskinovsky
- PMMH, CNRS-UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
10
|
ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Sci Rep 2016; 6:37427. [PMID: 27897167 PMCID: PMC5126637 DOI: 10.1038/srep37427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023] Open
Abstract
It is well known that a three-dimensional (3D) culture environment and the presence of extracellular matrix (ECM) proteins facilitate hepatocyte viability and maintenance of the liver-specific phenotype in vitro. However, it is not clear whether specific ECM components such as collagen or fibronectin differentially regulate such processes, especially in 3D scaffolds. In this study, a series of ECM-functionalized inverted colloidal crystal (ICC) microporous scaffolds were fabricated and their influence on Huh-7.5 cell proliferation, morphology, hepatic-specific functions, and patterns of gene expression were compared. Both collagen and fibronectin promoted albumin production and liver-specific gene expression of Huh-7.5 cells, compared with the bare ICC scaffold. Interestingly, cells in the fibronectin-functionalized scaffold exhibited different aggregation patterns to those in the collagen-functionalized scaffold, a variation that could be related to the distinct mRNA expression levels of cell adhesion-related genes. Based on these results, we can conclude that different ECM proteins, such as fibronectin and collagen, indeed play distinct roles in the phenotypic regulation of cells cultured in a 3D environment.
Collapse
|
11
|
Wang Y, Kim MH, Tabaei SR, Park JH, Na K, Chung S, Zhdanov VP, Cho NJ. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations. PLoS One 2016; 11:e0161915. [PMID: 27571565 PMCID: PMC5003351 DOI: 10.1371/journal.pone.0161915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Myung Hee Kim
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Seyed R. Tabaei
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Jae Hyeok Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Vladimir P. Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
12
|
Santiesteban DY, Kubelick K, Dhada KS, Dumani D, Suggs L, Emelianov S. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies. Ann Biomed Eng 2016; 44:750-72. [PMID: 26692081 PMCID: PMC4956083 DOI: 10.1007/s10439-015-1509-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.
Collapse
Affiliation(s)
- Daniela Y Santiesteban
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kelsey Kubelick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
| | - Diego Dumani
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Laura Suggs
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
14
|
Abstract
Biological mechano-transduction and force-dependent changes scale from protein conformation (â„« to nm) to cell organization and multi-cell function (mm to cm) to affect cell organization, fate, and homeostasis. External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function.
Collapse
Affiliation(s)
- Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - William I. Weis
- Department of Structural Biology, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| |
Collapse
|