1
|
Wolf ME, Hinchen DJ, McGeehan JE, Eltis LD. Characterization of a cytochrome P450 that catalyzes the O-demethylation of lignin-derived benzoates. J Biol Chem 2024; 300:107809. [PMID: 39307304 PMCID: PMC11530827 DOI: 10.1016/j.jbc.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds. PbdA had the highest affinity (Kd = 3.8 ± 0.6 μM) and apparent specificity (kcat/KM = 20,000 ± 3000 M-1 s-1) for p-MBA. The enzyme also O-demethylated two related lignin-derived aromatic compounds with remarkable efficiency: veratrate and isovanillate. PbdA also catalyzed the hydroxylation and dehydrogenation of p-ethylbenzoate even though RHA1 did not grow on this compound. Atomic-resolution structures of PbdA in complex with p-MBA, p-ethylbenzoate, and veratrate revealed a cluster of three residues that form hydrogen bonds with the substrates' carboxylate: Ser87, Ser237, and Arg84. Substitution of these residues resulted in lower affinity and O-demethylation activity on p-MBA as well as increased affinity for the acetyl analog, p-methoxyacetophenone. The S87A and S237A variants of PbdA also catalyzed the O-demethylation of an aldehyde analog of p-MBA, p-methoxy-benzaldehyde, while the R84M variant did not, despite binding this compound with high affinity. These results suggest that Ser87, Ser237, and Arg84 are not only important determinants of specificity but also help to orientate that substrate correctly in the active site. This study facilitates the design of biocatalysts for lignin valorization.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Daniel J Hinchen
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Afewerki S, Edlund U. Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin. ACS POLYMERS AU 2023; 3:447-456. [PMID: 38107415 PMCID: PMC10722568 DOI: 10.1021/acspolymersau.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young's modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol 2023; 80:102913. [PMID: 36854202 DOI: 10.1016/j.copbio.2023.102913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Energy is one of the most complex fields of study and an issue that influences nearly every aspect of modern life. Over the past century, combustion of fossil fuels, particularly in the transportation sector, has been the dominant form of energy release. Refining of petroleum and natural gas into liquid transportation fuels is also the centerpiece of the modern chemical industry used to produce materials, solvents, and other consumer goods. In the face of global climate change, the world is searching for alternative, sustainable means of producing energy carriers and chemical building blocks. The use of biofuels in engines predates modern refinery optimization and today represents a small but significant fraction of liquid transportation fuels burnt each year. Similarly, white biotechnology has been used to produce many natural products through fermentation. The evolution of recombinant DNA technology into modern synthetic biology has expanded the scope of biofuels and bioproducts that can be made by biocatalysts. This opinion examines the current trends in this research space, highlighting the substantial growth in computational tools and the growing influence of renewable electricity in the design of metabolic engineering strategies. In short, advanced biofuel and bioproduct synthesis remains a vibrant and critically important field of study whose focus is shifting away from the conversion of lignocellulosic biomass toward a broader consideration of how to reduce carbon dioxide to fuels and chemical products.
Collapse
|
4
|
Brandolese A, Lamparelli DH, Pericàs MA, Kleij AW. Synthesis of Biorenewable Terpene Monomers Using Enzymatic Epoxidation under Heterogeneous Batch and Continuous Flow Conditions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4885-4893. [PMID: 37869721 PMCID: PMC10586497 DOI: 10.1021/acssuschemeng.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Indexed: 10/24/2023]
Abstract
A commercially available Lipase B from Candida antarctica immobilized onto a macroporous support (Novozym 435) has been employed in the presence of H2O2 as a benign oxidant for the epoxidation of various biorenewable terpenes. This epoxidation protocol was explored under both heterogeneous batch and continuous flow conditions. The catalyst recyclability was also investigated demonstrating good activity throughout 10 cycles under batch conditions, while the same catalyst system could also be productively used under continuous flow operation for more than 30 h. This practical and relatively safe sustainable flow epoxidation of di- and trisubstituted alkenes by H2O2 allows for the production of gram quantities of a range of terpene epoxides. As a proof of principle, the same protocol can also be applied to the epoxidation of biobased polymers as a means to post-functionalize these macromolecules and equip them with cross-linkable epoxy groups.
Collapse
Affiliation(s)
- Arianna Brandolese
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
for Science & Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - David H. Lamparelli
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
for Science & Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
for Science & Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili, C/Marcel·lí
Domingo s/n, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
for Science & Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institute of Research and Advanced Studies (ICREA), Passeig Lluis Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Lin HH, Mendez‐Perez D, Park J, Wang X, Cheng Y, Huo J, Mukhopadhyay A, Lee TS, Shanks BH. Precursor prioritization for p-cymene production through synergistic integration of biology and chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:126. [PMCID: PMC9670573 DOI: 10.1186/s13068-022-02226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
Abstract
The strategy of synergistic application of biological and chemical catalysis is an important approach for efficiently converting renewable biomass into chemicals and fuels. In particular, the method of determining the appropriate intermediate between the two catalytic methods is critical. In this work, we demonstrate p-cymene production through the integration of biosynthesis and heterogenous catalysis and show how a preferred biologically derived precursor could be determined. On the biological side, we performed the limonene and 1,8-cineole production through the mevalonate pathway. Titers of 0.605 g/L and a 1.052 g/L were achieved, respectively. This difference is in agreement with the toxicity of these compounds toward the producing microorganisms, which has implications for subsequent development of the microbial platform. On the heterogeneous catalysis side, we performed the reaction with both biological precursors to allow for direct comparison. Using hydrogenation/dehydrogenation metals on supports with acid sites, both limonene and 1,8-cineole were converted to p-cymene with similar yields under equivalent reaction conditions. Thus, we could determine that the most promising strategy would be to target 1,8-cineole, the higher titer and lower toxicity bio-derived precursor with subsequent catalytic conversion to p-cymene. We further optimized the biological production of 1,8-cineole via fed-batch fermentation and reached the titer of 4.37 g/L which is the highest known 1,8-cineole titer from microbial production. This work provides a valuable paradigm for early stage considerations to determine the best route for the high-efficiency production of a target biobased molecule using an integration of biology and chemistry.
Collapse
Affiliation(s)
- Hsi-Hsin Lin
- grid.34421.300000 0004 1936 7312Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 USA ,grid.34421.300000 0004 1936 7312Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA 50011 USA ,grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
| | - Daniel Mendez‐Perez
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jimin Park
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Xi Wang
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yan Cheng
- grid.34421.300000 0004 1936 7312Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 USA ,grid.34421.300000 0004 1936 7312Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA 50011 USA
| | - Jiajie Huo
- grid.34421.300000 0004 1936 7312Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 USA ,grid.34421.300000 0004 1936 7312Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA 50011 USA
| | - Aindrila Mukhopadhyay
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Taek Soon Lee
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Brent H. Shanks
- grid.34421.300000 0004 1936 7312Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 USA ,grid.34421.300000 0004 1936 7312Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA 50011 USA ,grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
| |
Collapse
|
6
|
Suzuki Y, Okamura-Abe Y, Otsuka Y, Araki T, Nojiri M, Kamimura N, Masai E, Nakamura M. Integrated process development for grass biomass utilization through enzymatic saccharification and upgrading hydroxycinnamic acids via microbial funneling. BIORESOURCE TECHNOLOGY 2022; 363:127836. [PMID: 36031121 DOI: 10.1016/j.biortech.2022.127836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In grass biomass, hydroxycinnamic acids (HCAs) play crucial roles in the crosslinking of lignin and polysaccharides and can be easily extracted by mild alkaline pretreatment, albeit heterogeneously. Here, HCAs were extracted from bamboo and rice straw as model grass biomass with different HCAs composition, and microbial funneling was then conducted to produce 2-pyrone-4,6-dicarboxylic acid (PDC) and (4S)-3-carboxymuconolactone (4S-3CML), promising building blocks for bio-based polymers, respectively. Pseudomonas putida PpY1100 engineered for efficient microbial funneling completely converted HCAs to PDC and 4S-3CML with high titers of 3.9-9.3 g/L and molar yields of 92-99%, respectively. The enzymatic saccharification efficiencies of lignocellulose after HCAs extraction were 29.5% in bamboo and 73.8% in rice straw, which are 8.9 and 6.8 times higher than in alkaline-untreated media, respectively. These results provide a green-like process for total valorization of grass biomass through enzymatic saccharification integrated with upgrading heterogeneous HCAs to a valuable single chemical via microbial funneling.
Collapse
Affiliation(s)
- Yuzo Suzuki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan.
| | - Yuriko Okamura-Abe
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
| | - Yuichiro Otsuka
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Takuma Araki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Masanobu Nojiri
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Nakamura
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
7
|
Harth FM, Celis J, Taubert A, Rössler S, Wagner H, Goepel M, Wilhelm C, Gläser R. Ru/C-Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae - Influence of pH and Biologically Relevant Additives. ChemistryOpen 2022; 11:e202200050. [PMID: 35822926 PMCID: PMC9278103 DOI: 10.1002/open.202200050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ethylene glycol (EG) is obtained by a novel, two-step approach combining a biotechnological and a heterogeneously catalyzed step. First, microalgae are cultivated to photobiocatalytically yield glycolic acid (GA) by means of photosynthesis from CO2 and water. GA is continuously excreted into the surrounding medium. In the second step, the GA-containing algal medium is used as feedstock for catalytic reduction with H2 to EG over a Ru/C catalyst. The present study focuses on the conversion of an authentic algae-derived GA solution. After identification of the key characteristics of the algal medium (compared to pure aqueous GA), the influence of pH, numerous salt additives, pH buffers and other relevant organic molecules on the catalytic GA reduction was investigated. Nitrogen- and sulfur-containing organic molecules can strongly inhibit the reaction. Moreover, pH adjustment by acidification is required, for which H2 SO4 is found most suitable. In combination with a modification of the biotechnological process to mitigate the use of inhibitory compounds, and after acidifying the algal medium, over Ru/C a EG yield of up to 21 % even at non-optimized reaction conditions was achieved.
Collapse
Affiliation(s)
- Florian M. Harth
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Joran Celis
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Anja Taubert
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Sonja Rössler
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Heiko Wagner
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Michael Goepel
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Christian Wilhelm
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| |
Collapse
|
8
|
Terrell E. Estimation of Hansen solubility parameters with regularized regression for biomass conversion products: An application of adaptable group contribution. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Selective Hydrogenation of Glycolic Acid to Renewable Ethylene Glycol over Supported Ruthenium Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab Eng 2022; 70:31-42. [PMID: 34982998 DOI: 10.1016/j.ymben.2021.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity. Here, we hypothesized that replacement of PobA, the native P. putida PHBH, with PraI, a PHBH from Paenibacillus sp. JJ-1b with a broader nicotinamide cofactor preference, could alleviate this bottleneck. Biochemical assays confirmed the strict preference of NADPH for PobA, while PraI can utilize either NADH or NADPH. Kinetic assays demonstrated that both PobA and PraI can utilize NADPH with comparable catalytic efficiency and that PraI also efficiently utilizes NADH at roughly half the catalytic efficiency. The X-ray crystal structure of PraI was solved and revealed absolute conservation of the active site architecture to other PHBH structures despite their differing cofactor preferences. To understand the effect in vivo, we compared three P. putida strains engineered to produce MA from p-coumarate (pCA), showing that expression of praI leads to lower 4-HBA accumulation and decreased NADP+/NADPH ratios relative to strains harboring pobA, indicative of a relieved 4-HBA bottleneck due to increased NADPH availability. In bioreactor cultivations, a strain exclusively expressing praI achieved a titer of 40 g/L MA at 100% molar yield and a productivity of 0.5 g/L/h. Overall, this study demonstrates the benefit of sampling readily available natural enzyme diversity for debottlenecking metabolic flux in an engineered strain for microbial conversion of lignin-derived compounds to value-added products.
Collapse
|
11
|
Lin HH, Cheng Y, Huo J, Shanks BH. Selective Ammonolysis of Bioderived Esters for Biobased Amide Synthesis. ACS OMEGA 2021; 6:30040-30049. [PMID: 34778675 PMCID: PMC8582026 DOI: 10.1021/acsomega.1c04750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Amidation is an important reaction for bioderived platform molecules, which can be upgraded for use in applications such as polymers. However, fundamental understanding of the reaction especially in the presence of multiple groups is still lacking. In this study, the amidation of dimethyl fumarate, maleate, and succinate through ester ammonolysis was examined. The reaction networks and significant side reactions, such as conjugate addition and ring closing, were determined. A preliminary kinetic comparison among additional C4 and C6 esters showed a significant correlation between molecular structure and ammonolysis reactivity. Esters with a C=C double bond in the molecule backbone were found to have higher ammonolysis reactivity. To improve the selectivity to unsaturated amides rather than byproducts, the effects of thermal conditions and additives in dimethyl fumarate ammonolysis were examined. Lower temperature and decreasing methoxide ion concentration in the solution relative to the base case conditions increased the fumaramide selectivity from 67.1 to 90.6%.
Collapse
Affiliation(s)
- Hsi-Hsin Lin
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Yan Cheng
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Jiajie Huo
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| |
Collapse
|
12
|
Huo J, Tessonnier JP, Shanks BH. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajie Huo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Brent H. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Fiorani G, Crestini C, Selva M, Perosa A. Advancements and Complexities in the Conversion of Lignocellulose Into Chemicals and Materials. Front Chem 2020; 8:797. [PMID: 32974288 PMCID: PMC7471057 DOI: 10.3389/fchem.2020.00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
This Perspective describes the challenges and objectives associated to the development of new chemical technologies for the conversion of lignocellulose (non-food or waste) into chemicals and materials; it also provides an outlook on the sources, potential products, and issues to be addressed.
Collapse
Affiliation(s)
- Giulia Fiorani
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.,C4S Center for Sustainability, Ca' Foscari University Foundation, Calle Larga Ca' Foscari, Venice, Italy
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Alvise Perosa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|