1
|
Knutie SA, Webster CN, Vaziri GJ, Albert L, Harvey JA, LaRue M, Verrett TB, Soldo A, Koop JAH, Chaves JA, Wegrzyn JL. Urban living can rescue Darwin's finches from the lethal effects of invasive vampire flies. GLOBAL CHANGE BIOLOGY 2024; 30:e17145. [PMID: 38273516 DOI: 10.1111/gcb.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johanna A Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Taylor B Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Alexandria Soldo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer A H Koop
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Huge AC, Adreani NM, Colombelli-Négrel D, Akçay Ç, Common LK, Kleindorfer S. Age effects in Darwin's finches: older males build more concealed nests in areas with more heterospecific singing neighbors. JOURNAL OF ORNITHOLOGY 2023; 165:179-191. [PMID: 38225937 PMCID: PMC10787676 DOI: 10.1007/s10336-023-02093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 01/17/2024]
Abstract
Nesting success tends to increase with age in birds, in part because older birds select more concealed nest sites based on experience and/or an assessment of prevailing predation risk. In general, greater plant diversity is associated with more biodiversity and more vegetation cover. Here, we ask if older Darwin's finch males nest in areas with greater vegetation cover and if these nest sites also have greater avian species diversity assessed using song. We compared patterns in Darwin's Small Tree Finch (Camarhynchus parvulus) and Darwin's Small Ground Finch (Geospiza fuliginosa) as males build the nest in both systems. We measured vegetation cover, nesting height, and con- vs. heterospecific songs per minute at 55 nests (22 C. parvulus, 33 G. fuliginosa). As expected, in both species, older males built nests in areas with more vegetation cover and these nests had less predation. A novel finding is that nests of older males also had more heterospecific singing neighbors. Future research could test whether older males outcompete younger males for access to preferred nest sites that are more concealed and sustain a greater local biodiversity. The findings also raise questions about the ontogenetic and fitness consequences of different acoustical experiences for developing nestlings inside the nest. Supplementary Information The online version contains supplementary material available at 10.1007/s10336-023-02093-5.
Collapse
Affiliation(s)
- Antonia C. Huge
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | | | - Çağlar Akçay
- Department of Psychology, Koç University, Istanbul, Turkey
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Lauren K. Common
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| | - Sonia Kleindorfer
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| |
Collapse
|
3
|
Sinclair BJ. An annotated checklist of the Diptera of the Galápagos Archipelago (Ecuador). Zootaxa 2023; 5283:1-102. [PMID: 37518751 DOI: 10.11646/zootaxa.5283.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/01/2023]
Abstract
The Diptera fauna of the Galápagos Archipelago is updated and an annotated checklist is presented. Currently 50 families, 207 genera, and a minimum of 324 species are recorded from the islands. Approximately 107 species are considered to have arrived on the Galápagos Islands through human introductions, an estimated 101 species are considered endemic, 42 species have naturally colonized the islands from mainland Americas, 21 species are either introduced or arrived naturally and 53 species remain unidentified. The following new combination is proposed: Chrysanthrax primitivus (Walker) is moved to Hemipenthes Loew as H. primitivus (Walker) comb. nov. All references to the Galápagos taxonomic literature are included, known island species distributions listed and general remarks on the biology of many species are provided.
Collapse
Affiliation(s)
- Bradley J Sinclair
- Canadian Food Inspection Agency; K.W. Neatby Bldg.; C.E.F.; 960 Carling Ave.; Ottawa; ON; Canada K1A 0C6; Canadian National Collection of Insects; Arachnids and Nematodes; Agriculture and Agri-Food Canada; K.W. Neatby Bldg.; C.E.F.; 960 Carling Ave.; Ottawa; ON; Canada K1A 0C6.
| |
Collapse
|
4
|
Common LK, Kleindorfer S, Colombelli-Négrel D, Dudaniec RY. Genetics reveals shifts in reproductive behaviour of the invasive bird parasite Philornis downsi collected from Darwin’s finch nests. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDue to novel or dynamic fluctuations in environmental conditions and resources, host and parasite relationships can be subject to diverse selection pressures that may lead to significant changes during and after invasion of a parasite. Genomic analyses are useful for elucidating evolutionary processes in invasive parasites following their arrival to a new area and host. Philornis downsi (Diptera: Muscidae), the avian vampire fly, was introduced to the Galápagos Islands circa 1964 and has since spread across the archipelago, feeding on the blood of developing nestlings of endemic land birds. Since its discovery, there have been significant changes to the dynamics of P. downsi and its novel hosts, such as shifting mortality rates and changing oviposition behaviour, however no temporal genetic studies have been conducted. We collected P. downsi from nests and traps from a single island population over a 14-year period, and genotyped flies at 469 single nucleotide polymorphisms (SNPs) using restriction-site associated DNA sequencing (RADSeq). Despite significant genetic differentiation (FST) between years, there was no evidence for genetic clustering within or across four sampling years between 2006 and 2020, suggesting a lack of population isolation. Sibship reconstructions from P. downsi collected from 10 Darwin’s finch nests sampled in 2020 showed evidence for shifts in reproductive behaviour compared to a similar genetic analysis conducted in 2004–2006. Compared with this previous study, females mated with fewer males, individual females oviposited fewer offspring per nest, but more unique females oviposited per nest. These findings are important to consider within reproductive control techniques, and have fitness implications for both parasite evolution and host fitness.
Collapse
|
5
|
Ramirez IE, Causton CE, Gutierrez GA, Mosquera D, Piedrahita P, Heimpel GE. Specificity within bird–parasite–parasitoid food webs: A novel approach for evaluating potential biological control agents of the avian vampire fly. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ismael E. Ramirez
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| | | | - George A. Gutierrez
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - Denis A. Mosquera
- Charles Darwin Research Station Charles Darwin Foundation Santa Cruz Ecuador
| | - Paolo Piedrahita
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - George E. Heimpel
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| |
Collapse
|
6
|
Bulgarella M, Lincango MP, Lahuatte PF, Oliver JD, Cahuana A, Ramírez IE, Sage R, Colwitz AJ, Freund DA, Miksanek JR, Moon RD, Causton CE, Heimpel GE. Persistence of the invasive bird-parasitic fly Philornis downsi over the host interbreeding period in the Galapagos Islands. Sci Rep 2022; 12:2325. [PMID: 35149738 PMCID: PMC8837626 DOI: 10.1038/s41598-022-06208-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Many parasites of seasonally available hosts must persist through times of the year when hosts are unavailable. In tropical environments, host availability is often linked to rainfall, and adaptations of parasites to dry periods remain understudied. The bird-parasitic fly Philornis downsi has invaded the Galapagos Islands and is causing high mortality of Darwin's finches and other bird species, and the mechanisms by which it was able to invade the islands are of great interest to conservationists. In the dry lowlands, this fly persists over a seven-month cool season when availability of hosts is very limited. We tested the hypothesis that adult flies could survive from one bird-breeding season until the next by using a pterin-based age-grading method to estimate the age of P. downsi captured during and between bird-breeding seasons. This study showed that significantly older flies were present towards the end of the cool season, with ~ 5% of captured females exhibiting estimated ages greater than seven months. However, younger flies also occurred during the cool season suggesting that some fly reproduction occurs when host availability is low. We discuss the possible ecological mechanisms that could allow for such a mixed strategy.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Department of Entomology, University of Minnesota, St. Paul, MN, USA.
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - M Piedad Lincango
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
- Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador
| | - Paola F Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Jonathan D Oliver
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Andrea Cahuana
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Ismael E Ramírez
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Roxanne Sage
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Alyssa J Colwitz
- Biology Department, University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - Deborah A Freund
- Biology Department, University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - James R Miksanek
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Roger D Moon
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
7
|
Martina C, Krenn L, Krupicka L, Yamada H, Hood-Nowotny R, Lahuatte PF, Yar J, Schwemhofer T, Fischer B, Causton CE, Tebbich S. Evaluating Volatile Plant Compounds of Psidium galapageium (Myrtales: Myrtaceae) as Repellents Against Invasive Parasitic Diptera in the Galapagos Islands. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:89-98. [PMID: 34761264 DOI: 10.1093/jme/tjab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-based repellents represent a safe, economic, and viable alternative to managing invasive insects that threaten native fauna. Observations of self-medication in animals can provide important cues to the medicinal properties of plants. A recent study in the Galapagos Islands found that Darwin's finches apply the leaves of Psidium galapageium (Hooker 1847) to their feathers, extracts of which were repellent to mosquitoes and the parasitic fly Philornis downsi (Dodge & Aitkens 1968; Diptera: Muscidae). Introduced mosquitoes are suspected vectors of avian pathogens in the Galapagos Islands, whereas the larvae of P. downsi are blood-feeders, causing significant declines of the endemic avifauna. In this study, we investigated the volatile compounds found in P. galapageium, testing each against a model organism, the mosquito Anopheles arabiensis (Patton 1905; Diptera: Culicidae), with the aim of singling out the most effective compound for repelling dipterans. Examinations of an ethanolic extract of P. galapageium, its essential oil and each of their respective fractions, revealed a mixture of monoterpenes and sesquiterpenes, the latter consisting mainly of guaiol, trans-nerolidol, and β-eudesmol. Of these, trans-nerolidol was identified as the most effective repellent to mosquitoes. This was subsequently tested at four different concentrations against P. downsi, but we did not find a repellence response. A tendency to avoid the compound was observed, albeit significance was not achieved in any case. The lack of repellence suggests that flies may respond to a combination of the volatile compounds found in P. galapageium, rather than to a single compound.
Collapse
Affiliation(s)
- C Martina
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - L Krenn
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - L Krupicka
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - H Yamada
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - R Hood-Nowotny
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - P F Lahuatte
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - J Yar
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - T Schwemhofer
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - B Fischer
- Department of Evolutionary Biology, Unit for Theoretical Biology, University of Vienna, A-1090, Vienna, Austria
| | - C E Causton
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - S Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Lynton‐Jenkins JG, Russell AF, Chaves J, Bonneaud C. Avian disease surveillance on the island of San Cristóbal, Galápagos. Ecol Evol 2021; 11:18422-18433. [PMID: 35003681 PMCID: PMC8717262 DOI: 10.1002/ece3.8431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022] Open
Abstract
Endemic island species face unprecedented threats, with many populations in decline or at risk of extinction. One important threat is the introduction of novel and potentially devastating diseases, made more pressing due to accelerating global connectivity, urban development, and climatic changes. In the Galápagos archipelago two important wildlife diseases: avian pox (Avipoxvirus spp.) and avian malaria (Plasmodium spp. and related Haemosporidia) challenge endemic species. San Cristóbal island has seen a paucity of disease surveillance in avian populations, despite the island's connectedness to the continent and the wider archipelago. To survey prevalence and better understand the dynamics of these two diseases on San Cristóbal, we captured 1205 birds of 11 species on the island between 2016 and 2020. Study sites included urban and rural lowland localities as well as rural highland sites in 2019. Of 995 blood samples screened for avian haemosporidia, none tested positive for infection. In contrast, evidence of past and active pox infection was observed in 97 birds and identified as strains Gal1 and Gal2. Active pox prevalence differed significantly with contemporary climatic conditions, being highest during El Niño events (~11% in 2016 and in 2019 versus <1% in the La Niña year of 2018). Pox prevalence was also higher at urban sites than rural (11% to 4%, in 2019) and prevalence varied between host species, ranging from 12% in medium ground finches (Geospiza fortis) to 4% in Yellow Warblers (Setophaga petechial aureola). In the most common infected species (Small Ground Finch: Geospiza fuliginosa), birds recovered from pox had significantly longer wings, which may suggest a selective cost to infection. These results illustrate the threat future climate changes and urbanization may present in influencing disease dynamics in the Galápagos, while also highlighting unknowns regarding species-specific susceptibilities to avian pox and the transmission dynamics facilitating outbreaks within these iconic species.
Collapse
Affiliation(s)
| | | | - Jaime Chaves
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
| | | |
Collapse
|
9
|
Percara A, Quiroga MA, Beldomenico PM, Monje LD. Genetic diversity and geographic distribution of parasitic flies of the Philornis torquans complex in Argentina. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:567-579. [PMID: 34129691 DOI: 10.1111/mve.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Philornis Meinert 1890 (Diptera: Muscidae) is a genus of flies that parasitize birds in the Neotropical region. The characteristics of the host-parasite interactions and its consequences may depend on the Philornis species involved, and thus precise identification of these parasites is crucial for the interpretation of ecological and epidemiological studies. However, morphological identification of Argentine Philornis species is elusive while molecular evidence points towards the existence of a complex of cryptic species or lineages undergoing a speciation process, which were named the 'Philornis torquans complex'. Herein the authors extended the current knowledge on the systematics and biogeography of parasitic Philornis flies from Argentina, analysing samples collected in several ecoregions, including the Atlantic Forest, Iberá Wetlands, Open Fields and Grasslands, Espinal, Pampa, Dry Chaco, Humid Chaco, Delta and Paraná River Islands, Monte of Plains and Plateaus. The results of the present study strengthen the evidence on previously described Philornis genotypes using four genetic markers (ITS2, COI, ND6, 12S rRNA). The authors report new patterns of occurrence and describe the presence of a novel genotype of subcutaneous Philornis. In addition, the present study unveils ecological niche differences among genotypes of the Philornis torquans complex in southern South America.
Collapse
Affiliation(s)
- A Percara
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - M A Quiroga
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
- The Peregrine Fund, Boise, ID, U.S.A
- Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - P M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
- Facultad de Ciencias Veterinarias, UNL, Esperanza, Argentina
| | - L D Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| |
Collapse
|
10
|
Temporal and spatial variation in sex-specific abundance of the avian vampire fly (Philornis downsi). Parasitol Res 2021; 121:63-74. [PMID: 34799771 PMCID: PMC8748338 DOI: 10.1007/s00436-021-07350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 10/26/2022]
Abstract
Understanding the range and behaviour of an invasive species is critical to identify key habitat areas to focus control efforts. Patterns of range use in parasites can differ temporally, across life stages and between sexes. The invasive avian vampire fly, Philornis downsi, spends the larval stage of its life within bird nests, feeding on developing nestlings and causing high levels of mortality and deformation. However, little is known of the ecology and behaviour of the non-parasitic adult fly life stage. Here, we document sex-specific temporal and spatial patterns of abundance of adult avian vampire flies during a single Darwin's finch breeding season. We analyse fly trapping data collected across 7 weeks in the highlands (N = 405 flies) and lowlands (N = 12 flies) of Floreana Island (Galápagos). Lowland catches occurred later in the season, which supports the hypothesis that flies may migrate from the food-rich highlands to the food-poor lowlands once host breeding has commenced. Fly abundance was not correlated with host nesting density (oviposition site) but was correlated with distance to the agricultural zone (feeding site). We consistently caught more males closer to the agricultural zone and more females further away from the agricultural zone. These sex differences suggest that males may be defending or lekking at feeding sites in the agricultural zone for mating. This temporal and sex-specific habitat use of the avian vampire fly is relevant for developing targeted control methods and provides insight into the behavioural ecology of this introduced parasite on the Galápagos Archipelago.
Collapse
|
11
|
Pike CL, Ramirez IE, Anchundia DJ, Fessl B, Heimpel GE, Causton CE. Behavior of the Avian Parasite Philornis downsi (Diptera: Muscidae) in and Near Host Nests in the Galapagos Islands. JOURNAL OF INSECT BEHAVIOR 2021; 34:296-311. [PMID: 35153376 PMCID: PMC8813692 DOI: 10.1007/s10905-021-09789-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED The Avian Vampire Fly, Philornis downsi, has invaded the Galapagos Islands, where it causes high mortality of endemic and native landbird species, including most species of Darwin's finches. Control methods are under development, but key information is missing about the reproductive biology of P. downsi and the behavior of flies in and near nests of their hosts. We used external and internal nest cameras to record the behavior of P. downsi adults within and outside nests of the Galapagos Flycatcher, Myiarchus magnirostris, throughout all stages of the nesting cycle. These recordings showed that P. downsi visited flycatcher nests throughout the day with higher fly activity during the nestling phase during vespertine hours. The observations also revealed that multiple P. downsi individuals can visit nests concurrently, and that there are some interactions among these flies within the nest. Fly visitation to nests occurred significantly more often while parent birds were away from the nest than in the nest, and this timing appears to be a strategy to avoid predation by parent birds. We report fly mating behavior outside the nest but not in the nest cavity. We discuss the relevance of these findings for the adaptive forces shaping P. downsi life history strategies as well as rearing and control measures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10905-021-09789-7.
Collapse
Affiliation(s)
- Courtney L. Pike
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | | | - David J. Anchundia
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | - Birgit Fessl
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
| | | | - Charlotte E. Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
| |
Collapse
|
12
|
Hayes CD, Hayes TI, Quiroga M, Thorstrom RK, Bond L, Anderson DL. Is the grass always greener on the other side? Weak relationships between vegetation cover and parasitic fly infestations. Parasitol Res 2021; 120:3497-3505. [PMID: 34490523 DOI: 10.1007/s00436-021-07287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Understanding parasite-host ecology is increasingly important for conservation efforts in a changing world. Parasitic nest flies in the genus Philornis (Diptera: Muscidae) have been implicated in the decline of endemic island species and are also known to negatively impact breeding success of the critically endangered Ridgway's hawk (B. ridgwayi) on the island of Hispaniola. Despite the importance of these effects on hosts, and extensive research of Philornis downsi in the Galápagos, the ecology of most species of philornid nest flies is poorly understood. We examined biotic factors related to Philornis pici infestations of nestling Ridgway's hawks in the Dominican Republic, where both fly and hawk are native. We found grass-cover was negatively associated with P. pici infestations, while coverage and height of other vegetation classes (tree, shrub, herbaceous, and bare ground) had no association, which is interesting considering recent landscape-level changes to Ridgway's hawk habitat. Anthropogenic activities in Los Haitises National Park, the last strong-hold of Ridgway's hawk, have shifted the landscape from primary forest to a fragmented secondary forest with smallholder or subsistence farms and grassy patches. New information on the ecology of nest flies in their native habitat can inform conservation efforts and allow us to make recommendations for future research.
Collapse
Affiliation(s)
- Christine D Hayes
- The Peregrine Fund, Boise, ID, USA. .,Department of Biological Sciences, Boise State University, Boise, ID, USA.
| | | | - Martín Quiroga
- The Peregrine Fund, Boise, ID, USA.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (UNL-CONICET), Esperanza, Santa Fe, Argentina.,Instituto Tecnológico de Santo Domingo, Santo Domingo, República Dominicana
| | | | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | | |
Collapse
|
13
|
Theodosopoulos AN, Grabenstein KC, Bensch S, Taylor SA. A highly invasive malaria parasite has expanded its range to non-migratory birds in North America. Biol Lett 2021; 17:20210271. [PMID: 34493062 PMCID: PMC8424330 DOI: 10.1098/rsbl.2021.0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Parasite range expansions are a direct consequence of globalization and are an increasing threat to biodiversity. Here, we report a recent range expansion of the SGS1 strain of a highly invasive parasite, Plasmodium relictum, to two non-migratory passerines in North America. Plasmodium relictum is considered one of the world's most invasive parasites and causes the disease avian malaria: this is the first reported case of SGS1 in wild non-migratory birds on the continent. Using a long-term database where researchers report avian malaria parasite infections, we summarized our current understanding of the geographical range of SGS1 and its known hosts. We also identified the most likely geographical region of this introduction event using the MSP1 allele. We hypothesize that this introduction resulted from movements of captive birds and subsequent spillover to native bird populations, via the presence of competent vectors and ecological fitting. Further work should be conducted to determine the extent to which SGS1 has spread following its introduction in North America.
Collapse
Affiliation(s)
| | - Kathryn C. Grabenstein
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Staffan Bensch
- Department of Biology, MEEL, Lund University, Lund, Sweden
| | - Scott A. Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Bueno I, Singer RS, Yoe C, Parrish R, Travis DA, Ponder JB. Optimizing Risk Management Strategies for the Control of Philornis downsi—A Threat to Birds in the Galápagos Islands. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.721892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most concerning threats to Galápagos bird populations, including some critically endangered species, is the invasive parasitic fly Philornis downsi. While long-term sustained solutions are under study, immediate actions are needed to reduce the impacts of this fly. Application of permethrin to birds's nests has been successfully done, but there might be potential long-term reproductive effects to birds. Cyromazine, an insect growth regulator, has been proposed as an alternative, but its risks and effectiveness are unknown. The goal of this study was to assist managers to determine which combination of chemical (permethrin or cyromazine) and mode of application (injection, spray, and self-fumigation) was likely to be most effective to control P. downsi while minimizing toxicity to small land birds in Galápagos, given data available and high levels of uncertainty in some cases. This study is presented as a semi-quantitative risk assessment employing the use of a multi-criteria decision analysis (MCDA) model. For the six potential alternatives resulting from the combination of chemical and mode of application, the criteria were given a score from 1 to 6 supported by available evidence from the literature and from expert opinion. In addition, three different scenarios with different sets of weights for each criterion were assessed with stakeholder's input. Considering the scenario with higher weight to effectiveness of the method against P. downsi while also weighing heavily to minimize the toxicity to birds, cyromazine spray followed by permethrin injection were the preferred strategies. Self-fumigation was the mode of application with highest uncertainty but with much potential to be further explored for its feasibility. The approach taken here to evaluate mitigation strategies against an important threat for avian species in Galápagos can also be used in other conservation programs when making real time decisions under uncertainty.
Collapse
|
15
|
Common LK, Sumasgutner P, Dudaniec RY, Colombelli-Négrel D, Kleindorfer S. Avian vampire fly (Philornis downsi) mortality differs across Darwin's finch host species. Sci Rep 2021; 11:15832. [PMID: 34349147 PMCID: PMC8338931 DOI: 10.1038/s41598-021-94996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
In invasive parasites, generalism is considered advantageous during the initial phase of introduction. Thereafter, fitness costs to parasites, such as host-specific mortality, can drive parasites towards specialism to avoid costly hosts. It is important to determine changes in host specificity of invasive populations to understand host-parasite dynamics and their effects on vulnerable host populations. We examined changes in mortality in the introduced avian vampire fly (Philornis downsi) (Diptera: Muscidae), a generalist myasis-causing ectoparasite, between 2004 and 2020 on Floreana Island (Galápagos). Mortality was measured as the proportion of immature larvae found upon host nest termination. Over the time period, the avian vampire fly was most abundant and had low mortality in nests of the critically endangered medium tree finch (Camarhynchus pauper) and had the highest mortality in nests of hybrid tree finches (Camarhynchus spp.). Low larval mortality was also found in small tree (Camarhynchus parvulus) and small ground finch (Geospiza fuliginosa) nests. Selection could favour avian vampire flies that select medium tree finch nests and/or avoid hybrid nests. Overall, the finding of differences in avian vampire fly survival across host species is parsimonious with the idea that the introduced fly may be evolving towards host specialisation.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia
| | - Petra Sumasgutner
- Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW , 2109, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia. .,Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
17
|
Harvey JA, Chernicky K, Simons SR, Verrett TB, Chaves JA, Knutie SA. Urban living influences the nesting success of Darwin's finches in the Galápagos Islands. Ecol Evol 2021; 11:5038-5048. [PMID: 34025990 PMCID: PMC8131787 DOI: 10.1002/ece3.7360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Urbanization is expanding worldwide with major consequences for organisms. Anthropogenic factors can reduce the fitness of animals but may have benefits, such as consistent human food availability. Understanding anthropogenic trade-offs is critical in environments with variable levels of natural food availability, such as the Galápagos Islands, an area of rapid urbanization. For example, during dry years, the reproductive success of bird species, such as Darwin's finches, is low because reduced precipitation impacts food availability. Urban areas provide supplemental human food to finches, which could improve their reproductive success during years with low natural food availability. However, urban finches might face trade-offs, such as the incorporation of anthropogenic debris (e.g., string, plastic) into their nests, which may increase mortality. In our study, we determined the effect of urbanization on the nesting success of small ground finches (Geospiza fuliginosa; a species of Darwin's finch) during a dry year on San Cristóbal Island. We quantified nest building, egg laying and hatching, and fledging in an urban and nonurban area and characterized the anthropogenic debris in nests. We also documented mortalities including nest trash-related deaths and whether anthropogenic materials directly led to entanglement- or ingestion-related nest mortalities. Overall, urban finches built more nests, laid more eggs, and produced more fledglings than nonurban finches. However, every nest in the urban area contained anthropogenic material, which resulted in 18% nestling mortality while nonurban nests had no anthropogenic debris. Our study showed that urban living has trade-offs: urban birds have overall higher nesting success during a dry year than nonurban birds, but urban birds can suffer mortality from anthropogenic-related nest-materials. These results suggest that despite potential costs, finches benefit overall from urban living and urbanization may buffer the effects of limited resource availability in the Galápagos Islands.
Collapse
Affiliation(s)
- Johanna A. Harvey
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Present address:
Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Shelby R. Simons
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Taylor B. Verrett
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Jaime A. Chaves
- Department of BiologySan Francisco State UniversitySan FranciscoCAUSA
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoLaboratorio de Biología EvolutivaDiego de Robles y PampiteQuitoEcuador
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
18
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
19
|
Population structure of a nest parasite of Darwin’s finches within its native and invasive ranges. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bulgarella M, Knutie SA, Voss MA, Cunninghame F, Florence-Bennett BJ, Robson G, Keyzers RA, Taylor LM, Lester PJ, Heimpel GE, Causton CE. Sub-lethal effects of permethrin exposure on a passerine: implications for managing ectoparasites in wild bird nests. CONSERVATION PHYSIOLOGY 2020; 8:coaa076. [PMID: 32908668 PMCID: PMC7416766 DOI: 10.1093/conphys/coaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Permethrin is increasingly used for parasite control in bird nests, including nests of threatened passerines. We present the first formal evaluation of the effects of continued permethrin exposure on the reproductive success and liver function of a passerine, the zebra finch (Taeniopygia guttata), for two generations. We experimentally treated all nest material with a 1% permethrin solution or a water control and provided the material to breeding finches for nest building. The success of two consecutive clutches produced by the parental generation and one clutch produced by first-generation birds were tracked. Finches in the first generation were able to reproduce and fledge offspring after permethrin exposure, ruling out infertility. Permethrin treatment had no statistically significant effect on the number of eggs laid, number of days from clutch initiation to hatching, egg hatch rate, fledgling mass or nestling sex ratio in either generation. However, treating nest material with permethrin significantly increased the number of hatchlings in the first generation and decreased fledgling success in the second generation. Body mass for hatchlings exposed to permethrin was lower than for control hatchlings in both generations, but only statistically significant for the second generation. For both generations, an interaction between permethrin treatment and age significantly affected nestling growth. Permethrin treatment had no effect on liver function for any generation. Permethrin was detected inside 6 of 21 exposed, non-embryonated eggs (28.5% incidence; range: 693-4781 ng of permethrin per gram of dry egg mass). Overall, results from exposing adults, eggs and nestlings across generations to permethrin-treated nest material suggest negative effects on finch breeding success, but not on liver function. For threatened bird conservation, the judicious application of this insecticide to control parasites in nests can result in lower nestling mortality compared to when no treatment is applied. Thus, permethrin treatment benefits may outweigh its sub-lethal effects.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | | | - Francesca Cunninghame
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| | | | - Gemma Robson
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lauren M Taylor
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| |
Collapse
|
21
|
Trypanosomatids Detected in the Invasive Avian Parasite Philornis downsi (Diptera: Muscidae) in the Galapagos Islands. INSECTS 2020; 11:insects11070422. [PMID: 32659927 PMCID: PMC7411904 DOI: 10.3390/insects11070422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
Alien insect species may present a multifaceted threat to ecosystems into which they are introduced. In addition to the direct damage they may cause, they may also bring novel diseases and parasites and/or have the capacity to vector microorganisms that are already established in the ecosystem and are causing harm. Damage caused by ectoparasitic larvae of the invasive fly, Philornisdownsi (Dodge and Aitken) to nestlings of endemic birds in the Galapagos Islands is well documented, but nothing is known about whether this fly is itself associated with parasites or pathogens. In this study, diagnostic molecular methods indicated the presence of insect trypanosomatids in P. downsi; to our knowledge, this is the first record of insect trypanosomatids associated with Philornis species. Phylogenetic estimates and evolutionary distances indicate these species are most closely related to the Crithidia and Blastocrithidia genera, which are not currently reported in the Galapagos Islands. The prevalence of trypanosomatids indicates either P. downsi arrived with its own parasites or that it is a highly suitable host for trypanosomatids already found in the Galapagos Islands, or both. We recommend further studies to determine the origin of the trypanosomatid infections to better evaluate threats to endemic fauna of the Galapagos Islands.
Collapse
|
22
|
Quiroga MA, Hayes TI, Hayes CD, Garrod H, Soares L, Knutie SA, Latta SC, Anderson DL. More than just nestlings: incidence of subcutaneous Philornis (Diptera: Muscidae) nest flies in adult birds. Parasitol Res 2020; 119:2337-2342. [PMID: 32500371 DOI: 10.1007/s00436-020-06696-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Philornis flies Meinert (Diptera: Muscidae) have been documented parasitizing over 250 bird species, some of which are endemic species threatened with extinction. Philornis parasitism is hypothesized to affect nestlings disproportionately more than adult birds because limited mobility and exposed skin of nestlings increase their vulnerability to parasitism. We used a comprehensive literature review and our recent fieldwork in the Dominican Republic, Puerto Rico, and Grenada to challenge the idea that parasitism by subcutaneous Philornis species is a phenomenon primarily found in nestlings, a fact that has not been quantified to date. Of the 265 reviewed publications, 125 (49%) reported incidences of parasitism by subcutaneous Philornis, but only 12 included the sampling of adult breeding birds. Nine of these publications (75%) reported Philornis parasitism in adults of ten bird species. During fieldwork in the Dominican Republic, Puerto Rico, and Grenada, we documented 14 instances of parasitism of adult birds of seven avian species. From literature review and fieldwork, adults of at least fifteen bird species across 12 families and four orders of birds were parasitized by at least five Philornis species. In both the published literature and fieldwork, incidences of parasitism of adult birds occurred predominantly in females and was frequently associated with incubation. Although our findings indicate that Philornis parasitism of adult birds is more common than widely presumed, parasite prevalence is still greater in nestlings. In the future, we recommend surveys of adult birds to better understand host-Philornis relationships across life stages. This information may be essential for the development of effective control measures of Philornis to ensure the long-term protection of bird species of conservation concern.
Collapse
Affiliation(s)
- Martín A Quiroga
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA. .,Laboratorio de Ecología de Enfermedades (ICiVet Litoral - UNL - CONICET), R.P. Kreder 2805, S3080HOF, Santa Fe, Argentina. .,Department of Biology, Universidad Autónoma de Entre Ríos, Ruta Provincial N 11 Km. 10.5, Oro Verde, E3100XAD, Entre Ríos, Argentina. .,Instituto Tecnológico de Santo Domingo, Avenida de Los Próceres #49, Santo Domingo, 10602, República Dominicana.
| | - Thomas I Hayes
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA
| | - Christine D Hayes
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA.,Department of Biological Sciences, Boise State University, 1910 W University Drive, Boise, ID, 83725, USA
| | - Holly Garrod
- Department of Biology, Villanova University, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Leticia Soares
- Department of Biology, University of Western Ontario, 1151 Richmond Street, Ontario, N6A5B7, Canada
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., Unit 3043, Storrs, CT, 06269-3043, USA
| | - Steven C Latta
- National Aviary, 700 Arch Street, Pittsburgh, PA, 15212, USA
| | - David L Anderson
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA
| |
Collapse
|
23
|
McNew SM, Goodman GB, Yépez R J, Clayton DH. Parasitism by an invasive nest fly reduces future reproduction in Galápagos mockingbirds. Oecologia 2020; 192:363-374. [PMID: 31897722 DOI: 10.1007/s00442-019-04582-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
Organisms allocate limited resources to competing activities such as reproduction, growth, and defense against parasites and predators. The introduction of a novel parasite may create new life history trade-offs. As hosts increase their investment in self-maintenance or defense, the cost of parasitism may carry over to other aspects of host biology. Here, in an experimental field study, we document delayed effects of an introduced nest parasite, Philornis downsi, on reproduction of Galápagos mockingbirds (Mimus parvulus). Parasitism of first nests reduced both the number and size of chicks that parents hatched when they re-nested several weeks later. The delayed effect of P. downsi on future reproduction may have been mediated by behavioral shifts by the parents to avoid or resist parasitism. Our results demonstrate that effects of parasitism can persist even after immediate exposure ends. We draw attention to the potential implications that introduced parasites have for host reproductive strategies.
Collapse
Affiliation(s)
- Sabrina M McNew
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA.
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, 14850, USA.
| | - Graham B Goodman
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Janai Yépez R
- Charles Darwin Research Station, Santa Cruz Island, Galápagos, Ecuador
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
24
|
Behavioral Responses of the Invasive Fly Philornis downsi to Stimuli from Bacteria and Yeast in the Laboratory and the Field in the Galapagos Islands. INSECTS 2019; 10:insects10120431. [PMID: 31795249 PMCID: PMC6956314 DOI: 10.3390/insects10120431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Philornis downsi Dodge and Aitken (Diptera: Muscidae) is an avian parasitic fly that has invaded the Galapagos archipelago and exerts an onerous burden on populations of endemic land birds. As part of an ongoing effort to develop tools for the integrated management of this fly, our objective was to determine its long- and short-range responses to bacterial and fungal cues associated with adult P. downsi. We hypothesized that the bacterial and fungal communities would elicit attraction at distance through volatiles, and appetitive responses upon contact. Accordingly, we amplified bacteria from guts of adult field-caught flies and from bird feces, and yeasts from fermenting papaya juice (a known attractant of P. downsi), on selective growth media, and assayed the response of flies to these microbes or their exudates. In the field, we baited traps with bacteria or yeast and monitored adult fly attraction. In the laboratory, we used the proboscis extension response (PER) to determine the sensitivity of males and females to tarsal contact with bacteria or yeast. Long range trapping efforts yielded two female flies over 112 trap-nights (attracted by bacteria from bird feces and from the gut of adult flies). In the laboratory, tarsal contact with stimuli from gut bacteria elicited significantly more responses than did yeast stimuli. We discuss the significance of these findings in context with other studies in the field and identify targets for future work.
Collapse
|
25
|
Ursino CA, De Mársico MC, Reboreda JC. Brood parasitic nestlings benefit from unusual host defenses against botfly larvae (Philornis spp.). Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Grab KM, Hiller BJ, Hurlbert JH, Ingram ME, Parker AB, Pokutnaya DY, Knutie SA. Host tolerance and resistance to parasitic nest flies differs between two wild bird species. Ecol Evol 2019; 9:12144-12155. [PMID: 31832149 PMCID: PMC6854101 DOI: 10.1002/ece3.5682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Hosts have developed and evolved defense strategies to limit parasite damage. Hosts can reduce the damage that parasites cause by decreasing parasite fitness (resistance) or without affecting parasite fitness (tolerance). Because a parasite species can infect multiple host species, determining the effect of the parasite on these hosts and identifying host defense strategies can have important implications for multi-host-parasite dynamics.Over 2 years, we experimentally manipulated parasitic flies (Protocalliphora sialia) in the nests of tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis). We then determined the effects of the parasites on the survival of nestlings and compared defense strategies between host species. We compared resistance between host species by quantifying parasite densities (number of parasites per gram of host) and measured nestling antibody levels as a mechanism of resistance. We quantified tolerance by determining the relationship between parasite density and nestling survival and blood loss by measuring hemoglobin levels (as a proxy of blood recovery) and nestling provisioning rates (as a proxy of parental compensation for resources lost to the parasite) as potential mechanisms of tolerance.For bluebirds, parasite density was twice as high as for swallows. Both host species were tolerant to the effects of P. sialia on nestling survival at their respective parasite loads but neither species were tolerant to the blood loss to the parasite. However, swallows were more resistant to P. sialia compared to bluebirds, which was likely related to the higher antibody-mediated immune response in swallow nestlings. Neither blood recovery nor parental compensation were mechanisms of tolerance.Overall, these results suggest that bluebirds and swallows are both tolerant of their respective parasite loads but swallows are more resistant to the parasites. These results demonstrate that different host species have evolved similar and different defenses against the same species of parasite.
Collapse
Affiliation(s)
- Kirstine M. Grab
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota Twin CitiesSt. PaulMNUSA
| | | | | | | | - Alexandra B. Parker
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota Twin CitiesSt. PaulMNUSA
| | | | - Sarah A. Knutie
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
27
|
Causton CE, Moon RD, Cimadom A, Boulton RA, Cedeño D, Lincango MP, Tebbich S, Ulloa A. Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS One 2019; 14:e0224125. [PMID: 31626686 PMCID: PMC6874344 DOI: 10.1371/journal.pone.0224125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
The invasive parasitic fly, Philornis downsi (Muscidae), is one of the greatest threats to the avifauna of the Galapagos Islands. The larvae of this fly feed on the blood and tissues of developing nestlings of at least 18 endemic and native birds. The aim of the current study was to investigate biotic and abiotic factors that may influence the population dynamics of this invasive parasite. To study the influence of vegetation zone and related climatic factors on fly numbers, a bi-weekly monitoring program using papaya-baited traps was carried out at a dry, lowland site and at a humid, highland site on Santa Cruz Island between 2012-2014. Female flies, a large proportion of which were inseminated and gravid, were collected throughout the year at both sites, indicating females were active during and between the bird breeding seasons. This is the first evidence that female flies are able to persist even when hosts are scarce. On the other hand, catch rates of male flies declined between bird breeding seasons. Overall, catch rates of P. downsi were higher in the drier, lowland habitat, which may be a consequence of host or resource availability. Time was a stronger predictor of adult fly numbers than climate, further suggesting that P. downsi does not appear to be limited by its environment, but rather by host availability. Seasonal catch rates suggested that populations in both habitats were continuous and multivoltine. Numbers of adult female flies appeared to be regulated chiefly by simple direct density dependence, and may be governed by availability of bird nests with nestlings. Nevertheless, confounding factors such as the existence of reservoir hosts that perpetuate fly populations and changes in behavior of P. downsi may increase the vulnerability of bird hosts that are already IUCN red-listed or in decline.
Collapse
Affiliation(s)
- Charlotte E. Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - Roger D. Moon
- Department of Entomology, University of Minnesota, St. Paul, MN, United
States of America
| | - Arno Cimadom
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Rebecca A. Boulton
- College of Life and Environmental Sciences, University of Exeter,
Cornwall, United Kingdom
| | - Daniel Cedeño
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - María Piedad Lincango
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
- Facultad De Ciencias Agrícolas, Universidad Central Del Ecuador, Quito,
Pichincha, Ecuador
| | - Sabine Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Angel Ulloa
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| |
Collapse
|
28
|
Kleindorfer S, Custance G, Peters KJ, Sulloway FJ. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin's finch song. Proc Biol Sci 2019; 286:20190461. [PMID: 31185871 DOI: 10.1098/rspb.2019.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia.,2 Konrad Lorenz Research Station and Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | - Georgina Custance
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Katharina J Peters
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Frank J Sulloway
- 3 Department of Psychology, University of California , 2121 Berkeley Way, Room 3302, 4125 Tolman Hall, Berkeley, CA 94720 , USA
| |
Collapse
|
29
|
Bush SE, Clayton DH. Anti-parasite behaviour of birds. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0196. [PMID: 29866911 DOI: 10.1098/rstb.2017.0196] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 11/12/2022] Open
Abstract
Birds have many kinds of internal and external parasites, including viruses, bacteria and fungi, as well as protozoa, helminths and arthropods. Because parasites have negative effects on host fitness, selection favours the evolution of anti-parasite defences, many of which involve behaviour. We provide a brief review of anti-parasite behaviours in birds, divided into five major categories: (i) body maintenance, (ii) nest maintenance, (iii) avoidance of parasitized prey, (iv) migration and (v) tolerance. We evaluate the adaptive significance of the different behaviours and note cases in which additional research is particularly needed. We briefly consider the interaction of different behaviours, such as sunning and preening, and how behavioural defences may interact with other forms of defence, such as immune responses. We conclude by suggesting some general questions that need to be addressed concerning the nature of anti-parasite behaviour in birds.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Sarah E Bush
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
30
|
McNew SM, Knutie SA, Goodman GB, Theodosopoulos A, Saulsberry A, Yépez R. J, Bush SE, Clayton DH. Annual environmental variation influences host tolerance to parasites. Proc Biol Sci 2019; 286:20190049. [PMID: 30963843 PMCID: PMC6408884 DOI: 10.1098/rspb.2019.0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi, in nests of Galápagos mockingbirds ( Mimus parvulus) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi. These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host-parasite interactions.
Collapse
Affiliation(s)
- Sabrina M. McNew
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Sarah A. Knutie
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Graham B. Goodman
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | - Ashley Saulsberry
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Janai Yépez R.
- Charles Darwin Research Station, Santa Cruz Island, Galápagos, Ecuador
| | - Sarah E. Bush
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Dale H. Clayton
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
31
|
Occurrence of the Parasitic Fly Philornis torquans on Fledglings of the Rufous-Fronted Thornbird ( Phacellodomus rufifrons) in Southeast Brazil. J Wildl Dis 2018; 55:462-466. [PMID: 30475659 DOI: 10.7589/2018-04-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Philornis is a neotropical genus of muscid fly that interacts with birds and may affect the development and survival of the birds' offspring. Although Philornis is a relatively common parasite, there is a lack of information about Philornis hosts in several parts of the Americas. In this study, two nests of the Rufousfronted Thornbird ( Phacellodomus rufifrons) were collected in Pedro Leopoldo, southeast Brazil. The first contained four nestlings of advanced age (about 20 d old) and a recently emerged Philornis torquans female adult fly. The second nest contained three nestlings (less than 7 d old) and several Philornis torquans subcutaneous larvae. One of the nestlings was infested by 53 larvae, which had attacked several parts of its body and caused individual wounds containing 1 to more than 15 larvae. The length of the larvae ranged from 3 to 18 mm and only one was a second instar; the remaining 69 were third instars. The pupal period lasted 9-13 d. In total, 71 larvae were collected from the nest, with nestling parasitism varying from 7 to 53 larvae (mean- 23.7±25.5 larvae/nestling).
Collapse
|
32
|
Introduction history and genetic diversity of the invasive ant Solenopsis geminata in the Galápagos Islands. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1769-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Knutie SA. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 2018. [DOI: 10.1002/ecs2.2286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut 06269 USA
| |
Collapse
|