1
|
Robertson NE, Connolly J, Shevchenko N, Mascal M, Pinkerton KE, Nicklisch SCT, Nguyen TB. Chemical Composition of Aerosols from the E-Cigarette Vaping of Natural and Synthetic Cannabinoids. Chem Res Toxicol 2024; 37:1965-1975. [PMID: 39535063 DOI: 10.1021/acs.chemrestox.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaping cannabinoids in electronic (e)-cigarette devices is rapidly increasing in popularity, particularly among adolescents, although the chemistry affecting the composition of the vape aerosol is not well understood. This work investigates the formation of aerosol mass, bioactive hydroxyquinones, and harmful or potentially harmful carbonyls from the e-cigarette vaping of natural and synthetic cannabinoids e-liquids in propylene glycol and vegetable glycerin (PG/VG) solvent at a 50 mg/mL concentration in a commercial fourth-generation vaping device. The following cannabinoids were studied: cannabidiol (CBD), 8,9-dihydrocannabidiol (H2CBD), 1,2,8,9-tetrahydrocannabidiol (H4CBD), cannabigerol (CBG), and cannabidiolic acid (CBDA). Quantification of analytes was performed using liquid chromatography coupled to accurate mass spectrometry. The addition of cannabinoids significantly increased aerosol and carbonyl formation compared with the PG/VG solvent alone. All cannabinoids in the study formed hydroxyquinones during vaping (up to ∼1% mass conversion) except for CBDA, which primarily decarboxylated to CBD. Hydroxyquinone formation increased and carbonyl formation decreased, with a decreasing number of double bonds among CBD and its synthetic analogues (H2CBD and H4CBD). During the vaping process, ∼3-6% of the cannabinoid mass can be observed as carbonyls under the study conditions. Oxidation of the terpene moiety on the cannabinoids is proposed as a major contributor to carbonyl formation. CBD produced significantly higher concentrations of formaldehyde, acetaldehyde, acrolein, diacetyl, and methylglyoxal compared with the other cannabinoid samples. CBG produced significantly higher levels of acetone, methacrolein, and methylglyoxal. Conversion of CBD to tetrahydrocannabinol (THC) was not observed under the study conditions. The chemical mechanism basis for these observations is discussed. Compared with other modalities of use for CBD and other cannabinoids, vaping has the potential to adversely impact human health by producing harmful products during the heated aerosolization process.
Collapse
Affiliation(s)
- Nicholas E Robertson
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Jack Connolly
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Nikolay Shevchenko
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Mark Mascal
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and Environment, University of California Davis, Davis, California 95616, United States
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Story G, Lee J, Cohen G, Rani A, Doherty J, Sela DA. Impact of Dietary Fat and Oral Delivery System on Cannabigerol Pharmacokinetics in Adults. Cannabis Cannabinoid Res 2024; 9:1543-1555. [PMID: 38574248 PMCID: PMC11685294 DOI: 10.1089/can.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background and Aims: Cannabigerol (CBG) is a nonintoxicating cannabinoid synthesized in the Cannabis sativa plant that is incorporated into dietary supplements. This study investigated the influence of dietary fat and an emulsified delivery vehicle on CBG pharmacokinetics (PKs) after oral ingestion by adults. Materials and Methods: Consented participants were enrolled in a double-crossover pilot study and were blinded to the delivery vehicle type (isolate or emulsification) and isocaloric meal condition (low-fat=<5 g fat/meal or high-fat [HF]=>30 g fat/meal). The concentration of CBG in human plasma was measured after a single 25 mg dose of CBG using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PK parameters were calculated using noncompartmental analysis. Results: The PKs of the two delivery systems (emulsified vs. non-emulsified) were significantly impacted by the HF meal condition. Participants in the HF meal group exhibited significantly higher area under the plasma concentration time curve from time 0 to last quantifiable value, maximum concentration, and terminal half-life. Participants in the HF meal group also had a significantly lower terminal elimination rate constant and time to maximum concentration (Tmax), in addition to decreased Tmax variation. The threshold for bioequivalence between conditions was not met. An exploratory aim correlated anthropometric measures and previous day's dietary intake on PK parameters which yielded inconsistent results across dietary fat conditions. Conclusions: In aggregate, dietary fat had a greater effect on CBG PKs than the emulsified delivery vehicle. This supports accounting for dietary intake in development of therapeutics and administration guidelines for orally delivered CBG.
Collapse
Affiliation(s)
- Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Junghak Lee
- Massachusetts Hemp Analysis Facility, and University of Massachusetts, Amherst, Massachusetts, USA
| | - Gil Cohen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Asha Rani
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeffery Doherty
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Massachusetts Hemp Analysis Facility, and University of Massachusetts, Amherst, Massachusetts, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Gómez-Hoyos C, Serpa-Guerra A, Argel. Pérez S, Velásquez. Cock JA, Vélez-Acosta L, Gañán-Rojo P, Zuluaga-Gallego R. A Novel French-Style Salad Dressing Based on Pickering Emulsion of Oil-Water Lycopene from Guava and Cellulose Nanofibers. Molecules 2024; 29:5118. [PMID: 39519759 PMCID: PMC11547640 DOI: 10.3390/molecules29215118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The objective of this research was to assess the potential of a Pickering emulsion based on lycopene extracted from guava by sunflower oil-water and cellulose nanofibers (CNFs) isolated from banana residues as a novel ingredient for a French-style salad dressing. The aim was to determine the impact of this emulsion on the stability and rheological properties of the dressing as well as ascertain the presence of lycopene in the final product. The particle size distribution, rheological properties, and emulsion stability of the Pickering emulsion and salad dressing were evaluated. The sample exhibiting the optimal stability condition contained 0.5 wt.% of CNFs (EPI0.5). In order to prepare the French salad dressing based on this Pickering emulsion, three concentrations of vinegar were analyzed. All samples contained white salt and sugar. The findings suggest that alterations in emulsion stability may be influenced by the vinegar content and the presence of salt, particularly during the storage period, which also affects the concentration of lycopene. Notwithstanding these findings, the untrained panelists expressed a favorable opinion and acceptance of the dressings, indicating that the product could serve as an alternative means of enriching food through the incorporation of beneficial substances such as lycopene.
Collapse
Affiliation(s)
- Catalina Gómez-Hoyos
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Angélica Serpa-Guerra
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| | - Shaydier Argel. Pérez
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Jorge Andrés Velásquez. Cock
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Lina Vélez-Acosta
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| | - Piedad Gañán-Rojo
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia
| | - Robin Zuluaga-Gallego
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| |
Collapse
|
4
|
Vardanega R, Lüdtke FL, Loureiro L, Gonçalves RFS, Pinheiro AC, Vicente AA. Development and characterization of nanostructured lipid carriers for cannabidiol delivery. Food Chem 2024; 441:138295. [PMID: 38183719 DOI: 10.1016/j.foodchem.2023.138295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.
Collapse
Affiliation(s)
- Renata Vardanega
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal.
| | - Fernanda L Lüdtke
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Luís Loureiro
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Raquel F S Gonçalves
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ana C Pinheiro
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
5
|
Villate A, Barreto GP, Nicolás MS, Aizpurua-Olaizola O, Olivares M, Usobiaga A. Development, Characterization and In Vitro Gastrointestinal Release of PLGA Nanoparticles Loaded with Full-Spectrum Cannabis Extracts. AAPS PharmSciTech 2024; 25:120. [PMID: 38816596 DOI: 10.1208/s12249-024-02836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain.
| | - Gastón Pablo Barreto
- Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av del Valle 5737, CP7400, Olavarría, Buenos Aires, Argentina
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, CIFICEN (UNCPBA-CICPBA -CONICET), Av. Del Valle 5737, B7400JWI, Olavarría, Buenos Aires, Argentina
| | - Markel San Nicolás
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
- Sovereign Fields S.L, Larramendi Kalea 3, 20006, Donostia, Basque, Spain
| | | | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| |
Collapse
|
6
|
Story G, Briere CE, McClements DJ, Sela DA. Cannabidiol and Intestinal Motility: a Systematic Review. Curr Dev Nutr 2023; 7:101972. [PMID: 37786751 PMCID: PMC10541995 DOI: 10.1016/j.cdnut.2023.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.
Collapse
Affiliation(s)
- Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts, Amherst, MA, United States
| | - D. Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Department of Nutrition, University of Massachusetts, Amherst, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Walsh CA, Struble CA, Aharonovich E, Shmulewitz D, Borodovsky J, Habib MI, Budney A, Livne O, Hasin DS. Evaluating cannabis exposure in survey items: Insights, strategies, and remaining challenges identified from cognitive interviewing. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 7:100161. [PMID: 37179574 PMCID: PMC10173391 DOI: 10.1016/j.dadr.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
Background The diversity in characteristics of cannabis products and behavior patterns make evaluation of cannabis exposure in population-based, self-report surveys challenging. Accurate identification of cannabis exposure and related outcomes necessitates a thorough understanding of participants' interpretations of survey questions assessing cannabis consumption behaviors. Objectives The current study utilized cognitive interviewing to gain insight on participants' interpretation of items in a self-reported survey instrument used to estimate the quantity of THC consumed in population samples. Methods Cognitive interviewing was used to evaluate survey items assessing cannabis use frequency, routes of administration, quantity, potency, and perceived "typical patterns" of use. Ten participants ≥18 years (n = 4 cisgender-men; n = 3 cisgender-women; n = 3 non-binary/transgender) who had used cannabis plant material or concentrates in the past week were recruited to take a self-administered questionnaire and subsequently answer a series of scripted probes regarding survey items. Results While most items presented no issues with comprehension, participants identified several areas of ambiguity in question or response item wording or in visual cues included in the survey. Generally, participants with irregular use patterns (i.e., non-daily use) reported more difficulty recalling the time or quantity of cannabis use. Findings resulted in several changes to the updated survey, including updated reference images and new quantity/frequency of use items specific to the route of administration. Conclusion Incorporating cognitive interviewing into cannabis measurement development among a sample of knowledgeable cannabis consumers led to improvements in assessing cannabis exposure in population surveys, which may otherwise have been missed.
Collapse
Affiliation(s)
- Claire A. Walsh
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Cara A. Struble
- Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Efrat Aharonovich
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dvora Shmulewitz
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jacob Borodovsky
- Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Mohammad I. Habib
- Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Alan Budney
- Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Ofir Livne
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Deborah S. Hasin
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722W 168th St, New York, NY 10032, USA
| |
Collapse
|
8
|
Dowd AN, Zamarripa CA, Sholler DJ, Strickland JC, Goffi E, Borodovsky JT, Weerts EM, Vandrey R, Spindle TR. A cross-sectional survey on cannabis: Characterizing motives, opinions, and subjective experiences associated with the use of various oral cannabis products. Drug Alcohol Depend 2023; 245:109826. [PMID: 36871378 PMCID: PMC10044512 DOI: 10.1016/j.drugalcdep.2023.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Cannabis-infused products available for oral consumption include food and drink items (i.e., edibles) (e.g., baked goods, gummy-, chocolate-, and hard-candies, beverages/drinks) as well as non-food formulations (e.g., oils/tinctures, pills/capsules). This study characterized the motives, opinions, and subjective experiences associated with the use of these seven subtypes of oral cannabis products. METHODS This web-based survey collected cross-sectional, self-report data from a convenience sample of 370 adults regarding various use-motives, self-reported cannabinoid content, subjective experiences, and opinions related to ingesting oral cannabis products with alcohol and/or food. Advice participants had received about modifying oral cannabis product effects, in general, was also collected. RESULTS Participants reported consuming cannabis baked goods and gummy candies most frequently over the past year (68% and 63%, respectively). Participants were less likely to use oils/tinctures for enjoyment/desire relative to other product types and more likely to use oils/tinctures for therapeutic purposes (e.g., medication-replacement). Self-reported cannabinoid content was highly variable across participants and within product subtype. Participants reported feeling stronger and longer-lasting effects when consuming oral cannabis products on an empty stomach and 43% received advice to "eat a snack or meal" to mitigate effects that are too strong, which contrasts with controlled studies. Finally, 43% of participants reported modifying their experiences with alcohol at least some of time. CONCLUSIONS These findings underscore the need to further evaluate use-motives as well as the interaction between dietary factors, cannabinoid pharmacokinetics, and subjective drug effects and the interactive effects of oral cannabis products and alcohol in a controlled laboratory setting.
Collapse
Affiliation(s)
- Ashley N Dowd
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | - C Austin Zamarripa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Dennis J Sholler
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Elia Goffi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Jacob T Borodovsky
- Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Tory R Spindle
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Villate A, San Nicolas M, Olivares M, Aizpurua-Olaizola O, Usobiaga A. Chitosan-Coated Alginate Microcapsules of a Full-Spectrum Cannabis Extract: Characterization, Long-Term Stability and In Vitro Bioaccessibility. Pharmaceutics 2023; 15:859. [PMID: 36986720 PMCID: PMC10058102 DOI: 10.3390/pharmaceutics15030859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cannabinoids present in Cannabis sativa are increasingly used in medicine due to their therapeutic potential. Moreover, the synergistic interaction between different cannabinoids and other plant constituents has led to the development of full-spectrum formulations for therapeutic treatments. In this work, the microencapsulation of a full-spectrum extract via vibration microencapsulation nozzle technique using chitosan-coated alginate is proposed to obtain an edible pharmaceutical-grade product. The suitability of microcapsules was assessed by their physicochemical characterization, long-term stability in three different storage conditions and in vitro gastrointestinal release. The synthetized microcapsules contained mainly ∆9-tetrahydrocannabinol (THC)-type and cannabinol (CBN)-type cannabinoids and had a mean size of 460 ± 260 µm and a mean sphericity of 0.5 ± 0.3. The stability assays revealed that capsules should be stored only at 4 °C in darkness to maintain their cannabinoid profile. In addition, based on the in vitro experiments, a fast intestinal release of cannabinoids ensures a medium-high bioaccessibility (57-77%) of therapeutically relevant compounds. The full characterization of microcapsules indicates that they could be used for the design of further full-spectrum cannabis oral formulations.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Markel San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
- Sovereign Fields S.L., Larramendi Kalea 3, 20006 Donostia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | | | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
10
|
Banerjee A, Hayward JJ, Trant JF. "Breaking bud": the effect of direct chemical modifications of phytocannabinoids on their bioavailability, physiological effects, and therapeutic potential. Org Biomol Chem 2023; 21:3715-3732. [PMID: 36825573 DOI: 10.1039/d3ob00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two "major cannabinoids". However, their incorporation into clinical and nutraceutical preparations is challenging, owing to their limited bioavailability, low water solubility, and variable pharmacokinetic profiles. Understanding the organic chemistry of the major cannabinoids provides us with potential avenues to overcome these issues through derivatization. The resulting labile pro-drugs offer ready cannabinoid release in vivo, have augmented bioavailability, or demonstrate interesting pharmacological properties in their own right. This review identifies and discusses a subset of these advanced derivatization strategies for the major cannabinoids, where the starting material is the pure phytocannabinoid itself, and the final product either a cannabinoid pro-drug, or a novel pharmacoactive material.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| | - John J Hayward
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
11
|
Boyacıoğlu Ö, Korkusuz P. Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:145-169. [PMID: 36396926 DOI: 10.1007/5584_2022_748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
12
|
Berl V, Hurd YL, Lipshutz BH, Roggen M, Mathur EJ, Evans M. A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History. Cannabis Cannabinoid Res 2022; 7:777-789. [PMID: 35787693 PMCID: PMC9784610 DOI: 10.1089/can.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: An oral route of administration for tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) eliminates the harmful effects of smoking and has potential for efficacious cannabis delivery for therapeutic and recreational applications. We investigated the pharmacokinetics of CBD, Δ9-THC, 11-OH-THC, and 11-nor-9-carboxy-Δ9-THC (THC-COOH) in a novel oral delivery system, Solutech™, compared to medium-chain triglyceride-diluted cannabis oil (MCT-oil) in a healthy population. Materials and Methods: Thirty-two participants were randomized and divided into two study arms employing a comparator-controlled, parallel-study design. To evaluate the pharmacokinetics of Δ9-THC, CBD, 11-OH-THC, and THC-COOH, blood was collected at pre-dose (t=0) and 10, 20, 30, and 45, min and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 24, and 48 h post-dose after a single dose of Solutech (10.0 mg Δ9-THC, 9.76 mg CBD) or MCT (10.0 mg Δ9-THC, 9.92 mg CBD). Heart rate and blood pressure were measured at 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Relationships between cannabis use history, body mass index, sex, and pharmacokinetic parameters were investigated. Safety was assessed before and at 48 h post-acute dose. Results: Acute consumption of Solutech provided a significantly greater maximum concentration (Cmax), larger elimination and absorption rate constants, faster time to Cmax and lag time, and half-life for all analytes compared to MCT-oil (p<0.001). In addition, cannabis use history had a significant influence on the pharmacokinetic parameters of CBD, Δ9-THC, 11-OH-THC, and THC-COOH. On average, participants with later age of first use had higher Δ9-THC, CBD, and THC-COOH Cmax and later time-to-Cmax and half-life for Δ9-THC, CBD, THC-COOH, and 11-OH-THC than those with earlier age of first use (p≤0.032). Those with more years of recreational cannabis use had higher area under the curve for Δ9-THC and CBD, Cmax for CBD, and longer 11-OH-THC half-life than those with less (p≤0.048). Conclusion: This study demonstrated that consumption of Solutech enhanced most pharmacokinetics parameters measured compared to MCT-oil. Participant's cannabis use history, including their age of first use and number of years using cannabis significantly impacted pharmacokinetic parameters investigated. Acute consumption of both products was found to be safe and well tolerated. The results suggest that Solutech may optimize bioavailability from cannabis formulations.
Collapse
Affiliation(s)
- Volker Berl
- New Age Ventures, New York, New York, USA.,Address correspondence to: Volker Berl, PhD, New Age Ventures, 521 Fifth Avenue, Floor 17, New York, NY 10175, USA,
| | - Yasmin L. Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Addiction Institute of Mount Sinai, New York, New York, USA
| | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | | | | | | |
Collapse
|
13
|
Crystallization behavior of milk fat, palm oil, palm kernel oil, and cocoa butter with and without the addition of cannabidiol. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Lajoie C, Doyen A, Feutry P, Gagnon D, Brisson G. Impact of emulsifiers for the nanoencapsulation with maltodextrin of cannabis oil by spray drying on the physicochemical properties and bioaccessibility of cannabinoids. Food Funct 2022; 13:10320-10332. [PMID: 36125367 DOI: 10.1039/d2fo01591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study aimed to investigate the impact of various emulsifiers, namely whey protein isolate (WPI), soy protein isolate (SPI), and Tween 80 (Tw), on their ability to encapsulate cannabis oil with maltodextrin as the wall material. The physicochemical properties of the powder, the stability of the cannabinoids, and their bioaccessibility during static in vitro digestion were examined. The average diameter of fat globules in liquid nanoemulsions was 170, 259, and 95 nm for WPI, SPI, and Tw, respectively. The encapsulation efficiency was high for protein emulsifiers (>95%) compared to Tw (∼16%). Upon powder reconstitution in water, the emulsified fat droplets remained stable for WPI (176 nm); however, higher fat globule size (diameters of 346 nm and 210 nm) was observed for SPI and Tw powders, respectively. All oil powders had high solubility (>97%). The peroxide value (PV) showed nearly a fourfold increase for the oil extracted from the powder than the initial PV of bulk oil (5.2 mEq). However, UPLC-TUV analysis of the main cannabinoids (CBD, THC, and CBN) indicated that there is no significant difference between the various formulations and the bulk oil, except for lower Tw. The in vitro digestion model results showed higher bioaccessibility of the cannabinoids for Tw (∼53%) than for proteins (WPI ∼ 7% and SPI ∼ 10%). These findings suggest that the emulsifiers used for spray drying nanoencapsulation of cannabis oil have an impact on the encapsulation efficiency and cannabinoid bioaccessibility, highlighting the importance of choosing adequate emulsifiying agents for their optimal oral delivery.
Collapse
Affiliation(s)
- Camille Lajoie
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Alain Doyen
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Perrine Feutry
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Diane Gagnon
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Guillaume Brisson
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| |
Collapse
|
15
|
Eyal AM, Berneman Zeitouni D, Tal D, Schlesinger D, Davidson EM, Raz N. Vapor Pressure, Vaping, and Corrections to Misconceptions Related to Medical Cannabis' Active Pharmaceutical Ingredients' Physical Properties and Compositions. Cannabis Cannabinoid Res 2022. [PMID: 35442765 DOI: 10.1089/can.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medical cannabis products contain dozens of active pharmaceutical ingredients (APIs) derived from the cannabis plant. However, their actual compositions and relative doses significantly change according to the production methods. Product compositions are strongly dependent on processing step conditions and on components' evaporation during those steps. Review of the documentation presented to caregivers and to patients show erroneous data or misinterpretation of data related to the evaporation, for example, cannabinoids' boiling points, as well as confusions between terms, such as boiling, vaporization, and evaporation. Clarifying these aspects is essential for caregivers, for researchers, and for developers of manufacturing processes. Original and literature data were analyzed, comparing composition changes during various processing steps and correlating the extent of change to components' vapor pressures at the corresponding temperature. Evaporation-related composition changes start at temperatures as low as those of drying and curing and become extensive during decarboxylation. The relative rate of components' evaporation is determined by their relative vapor pressure and monoterpenes are lost first. On vaping, terpenes are inhaled before cannabinoids do. Commercial medical cannabis products are deficient in terpenes, mainly monoterpenes, compared with the cannabis plants used to produce them. Terms, such as "whole plant" and "full spectrum," are misleading since no product actually reflects the original cannabis plant composition. There are important implications for medical cannabis manufacturing and for the ability to make the most out of the terpene API contribution. Medical cannabis products' composition and product delivery are controlled by the relative vapor pressure of the various APIs. Quantitative data provided in this study can be used for improvement to reach better accuracy, reproducibility, and preferred medical cannabis compositions.
Collapse
Affiliation(s)
| | | | - Dor Tal
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | | | - Elyad M Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| |
Collapse
|
16
|
Ventresca M, Elliott C. Cannabis edibles packaging: Communicative objects in a growing market. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2022; 103:103645. [PMID: 35276401 DOI: 10.1016/j.drugpo.2022.103645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cannabis edibles were legalized for recreational use across Canada in October 2019. The Canadian Cannabis Act requires legally produced edibles to be sold in plain single-color packages with limited branded elements and prominent health warning labels, serving size and nutritional information, and product ingredients including amounts of cannabis compounds. Little research, however, assesses what consumers think of standardized packaging, and how product packaging influences perceptions of cannabis edibles. METHODS Eight focus groups with young adults (ages 18-24; n = 57) were conducted in November 2018. Participants were recruited from a Canadian university, and asked to assess sample images of cannabis packaging approved by Health Canada. They then discussed the information they would like to see on packages. Focus group discussions were transcribed and analyzed using a descriptive, qualitative approach following methods of process evaluation and inductive coding. RESULTS Discussions generally pertained to four main themes: dosage and consumption recommendations; food and nutritional information; concerns for children; and health warning labels. Participants suggested improvements for cannabis packaging, including standardized THC units, non-numerical consumption instructions, and unit-dose packaging. Instead of recommending packaging that deters consumption, participants requested packaging features that promote safe consumption by adults while also protecting children. Findings reveal how packages function as communicative objects that convey meanings about safety and risk, yet these meanings may not resonate with Canadian young adults' perceptions of cannabis as relatively safe. CONCLUSIONS While the packaging regulated for use in Canada may be assumed, due to its plain, standardized format, to communicate "little", we highlight tensions in the meanings of such packaging to young adults-especially around competing ideas related to safety and risk.
Collapse
Affiliation(s)
- Matt Ventresca
- Department of Communication, Media, and Film, University of Calgary, Canada
| | - Charlene Elliott
- Department of Communication, Media, and Film, University of Calgary, Canada.
| |
Collapse
|
17
|
De Prá MAA, Vardanega R, Loss CG. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int J Pharm 2021; 609:121159. [PMID: 34624443 DOI: 10.1016/j.ijpharm.2021.121159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
Herein, medium-chain triglycerides (MCT), glyceryl monolinoleate (GML), and a self-emulsifying drug delivery system (SEDDS) for cannabidiol (CBD) delivery were compared using in vitro and in vivo (mouse and human) studies. In vitro digestion tests showed that SEDDS yielded the highest CBD recovery in the aqueous phase (86 ± 2%), followed by GML (13 ± 2%) and MCT (5.6% ± 0.8%). In vivo tests (mouse) revealed that SEDDS promoted the highest CBD exposure, exhibiting an area under the plasma concentration-time curve (AUC0-6h) 1.48 times greater than GML and 3.97 times greater than that of the MCT formulation. A single-dose, open-label, crossover study performed in 11 volunteers showed that SEDDS increased CBD AUC0-12h by 1.12 and 1.48 times in relation to GML and MCT, respectively. The in vitro-in vivo correlation was r2 0.75 for mice and r2 0.66 for humans. The AUC correlation between mice and humans was 0.98. Collectively, these results indicate that the lipid profile substantially influences CBD delivery and highlights the potential of the SEDDS and GML formulations as candidate solutions for increasing CBD AUC and bioavailability.
Collapse
Affiliation(s)
- Manuel A A De Prá
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil.
| | - Renata Vardanega
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| | - Carla G Loss
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| |
Collapse
|
18
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Banerjee A, Binder J, Salama R, Trant JF. Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion. J Cannabis Res 2021; 3:43. [PMID: 34556180 PMCID: PMC8461879 DOI: 10.1186/s42238-021-00094-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study describes the design, optimization, and stress-testing of a novel phytocannabinoid nanoemulsion generated using high-pressure homogenization. [Formula: see text], a plant-derived commercial emulsifier containing quillaja saponin, was used to stabilize the lipid phase droplets in water. Stress-testing was performed on this nanoemulsion in order to evaluate its chemical and colloidal stability under the influence of different environmental factors, encompassing both physical and chemical stressors. METHODS Extensive optimization studies were conducted to arrive at an ideal nanoemulsion formulation. A coarse emulsion containing 16.6 wt% CBD-enriched cannabis distillate and 83.4 wt% carrier (soybean) oil dispersed in 10 wt% [Formula: see text] (1.5 wt% quillaja saponin) solution after 10 homogenization cycles at a pressure of 30,000 psi produced a stable nanoemulsion. This nanoemulsion was then subjected to the stress studies. RESULTS The optimized nanoemulsion had an average droplet diameter of ca. 120 nm and average droplet surface ζ potentials of ca. -30 mV. It was imaged and characterized by a variety of protocols. It proved to be stable to droplet agglomeration and phase separation upon storage under ambient conditions for 6 weeks, as well as under a variety of physical stressors such as heat, cold, dilution, and carbonation. pH values ≤2 and moderately high salt concentrations (> 100 mM), however, destabilized the nanoemulsion, eventually leading to phase separation. Cannabis potency, determined by HPLC, was detrimentally affected by any changes in the nanoemulsion phase stability. CONCLUSIONS Quillaja saponin stabilized cannabidiol(CBD)-enriched nanoemulsions are stable, robust systems even at low emulsifier concentrations, and are therefore significant from both a scientific as well as a commercial perspective.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | | | - Rayan Salama
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
20
|
Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Light K, Karboune S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Crit Rev Food Sci Nutr 2021; 62:8199-8229. [PMID: 34024201 DOI: 10.1080/10408398.2021.1926903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Emulsions, hydrogels and emulgels have attracted a high interest as tools for the delivery of poorly soluble hydrophobic nutraceuticals by enhancing their stability and bioavailability. This review provides an overview of these delivery systems, their unique qualities and their interactions with the human gastrointestinal system. The modulation of the various delivery systems to enhance the bioavailability and modify the release profile of bioactive encapsulates is highlighted. The application of the delivery systems in the delivery of cannabinoids is also discussed. With the recent increase of cannabis legalization across North America, there is much interest in developing cannabis edibles which can provide a consistent dose of cannabinoids per portion with a rapid time of onset. Indeed, the long time of onset of psychoactive effects and varied metabolic responses to these products result in a high risk of severe intoxication due to overconsumption. Sophisticated emulsion or hydrogel-based delivery systems are one potential tool to achieve this goal. To date, there is a lack of evidence linking specific classes of delivery systems with their pharmacokinetic profiles in humans. More research is needed to directly compare different classes of delivery systems for the gastrointestinal delivery of cannabinoids.
Collapse
Affiliation(s)
- Kelly Light
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
22
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
23
|
Zhang R, Zhang Z, McClements DJ. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf B Biointerfaces 2020; 194:111202. [DOI: 10.1016/j.colsurfb.2020.111202] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|