1
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. J Lipid Res 2025:100815. [PMID: 40288680 DOI: 10.1016/j.jlr.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as nearly all transcriptomic and metabolomic studies have relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and isoprenoid metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with carbohydrate metabolism and developmental growth.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Ruan M, Xu F, Li N, Yu J, Teng F, Tang J, Huang C, Zhu H. Free long-chain fatty acids trigger early postembryonic development in starved Caenorhabditis elegans by suppressing mTORC1. PLoS Biol 2024; 22:e3002841. [PMID: 39436954 PMCID: PMC11530034 DOI: 10.1371/journal.pbio.3002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/01/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.
Collapse
Affiliation(s)
- Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiawei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
3
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612925. [PMID: 39314431 PMCID: PMC11419140 DOI: 10.1101/2024.09.13.612925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and mevalonate metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with developmental growth and hint at a conserved mechanism by which ERR and HNF4 homologs coordinately regulate metabolic gene expression.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Li N, Hua B, Chen Q, Teng F, Ruan M, Zhu M, Zhang L, Huo Y, Liu H, Zhuang M, Shen H, Zhu H. A sphingolipid-mTORC1 nutrient-sensing pathway regulates animal development by an intestinal peroxisome relocation-based gut-brain crosstalk. Cell Rep 2022; 40:111140. [PMID: 35905721 DOI: 10.1016/j.celrep.2022.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The mTOR-dependent nutrient-sensing and response machinery is the central hub for animals to regulate their cellular and developmental programs. However, equivalently pivotal nutrient and metabolite signals upstream of mTOR and developmental-regulatory signals downstream of mTOR are not clear, especially at the organism level. We previously showed glucosylceramide (GlcCer) acts as a critical nutrient and metabolite signal for overall amino acid levels to promote development by activating the intestinal mTORC1 signaling pathway. Here, through a large-scale genetic screen, we find that the intestinal peroxisome is critical for antagonizing the GlcCer-mTORC1-mediated nutrient signal. Mechanistically, GlcCer deficiency, inactive mTORC1, or prolonged starvation relocates intestinal peroxisomes closer to the apical region in a kinesin- and microtubule-dependent manner. Those apical accumulated peroxisomes further release peroxisomal-β-oxidation-derived glycolipid hormones that target chemosensory neurons and downstream nuclear hormone receptor DAF-12 to arrest the animal development. Our data illustrate a sophisticated gut-brain axis that predominantly orchestrates nutrient-sensing-dependent development in animals.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Beilei Hua
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinbo Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Shen
- Institutes of Biomedical Sciences, Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Tang H, Huang X, Pang S. Regulation of the lysosome by sphingolipids: potential role in aging. J Biol Chem 2022; 298:102118. [PMID: 35691340 PMCID: PMC9257404 DOI: 10.1016/j.jbc.2022.102118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders. These diseases are defined by primary lysosomal defects and a few secondary defects such as mitochondrial dysfunction. Intriguingly, recent research indicates that the majority of these defects are also associated with aging, implying that sphingolipid-related diseases and aging may share common mechanisms. We propose that the lysosome is a pivotal hub for sphingolipid-mediated aging regulation. This review discusses the critical roles of sphingolipid metabolism in regulating various lysosomal functions, with an emphasis on how such regulation may contribute to aging and aging-related diseases.
Collapse
Affiliation(s)
- Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaokun Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Shen Y, Jiang Z, Zhong X, Wang H, Liu Y, Li X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153455. [PMID: 35093358 DOI: 10.1016/j.scitotenv.2022.153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal tract and intestine microbiota can both have deep effects on the lipid metabolism and immune function of amphibians. Additionally, the composition and structure of the microbial community are influenced by environmental pollutions. It is noteworthy that environmental compounds such as Cd and DEHP are pervasive in the aquatic environment and do not exist in isolation, and single exposure experiments cannot well explain the effects of unpredictable interactions between co-existing compounds on amphibians. In this study, we calculated the parameters of morphological and histological indices of Rana chensinensis tadpoles after treated with Cd and/or DEHP. The 16S rRNA gene sequencing technology was used to assess the relative abundance of intestinal microbial community among tadpoles from each treatment groups. We also examined the mRNA expression levels of lipid digestion and absorption and SCFAs related-genes. Our results indicated that all morphological and histological indices were significantly declined in the Cd treatment group, while the mixed treatment group was similar to the control group. Compared with the control group, the relative abundances of Firmicutes, Proteobacteria and Verrucomicrobia exhibited distinctive differences in Cd and/or DEHP treatment groups. Further, RT-qPCR results revealed that the expression levels of lipid metabolism and SCFAs related-genes were also significantly altered among the treatment groups. Taken together, the present study highlighted a new evidence that the alterations in intestinal microbial community and mRNA expression levels of larval amphibians after exposure to Cd and/or DEHP may impair lipid storage and transport, as well as reduce anti-inflammatory capacity, which may ultimately lead to a decline in amphibian populations.
Collapse
Affiliation(s)
- Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Zhong
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Wang M, Wang LS, Fang JN, Du GC, Zhang TT, Li RG. Transcriptomic Profiling of Bursaphelenchus xylophilus Reveals Differentially Expressed Genes in Response to Ethanol. Mol Biochem Parasitol 2022; 248:111460. [DOI: 10.1016/j.molbiopara.2022.111460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/18/2023]
|
8
|
Zhu M, Teng F, Li N, Zhang L, Zhang S, Xu F, Shao J, Sun H, Zhu H. Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. Dev Cell 2021; 56:2692-2702.e5. [PMID: 34610328 DOI: 10.1016/j.devcel.2021.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Animals have developed various nutrient-sensing mechanisms for survival under fluctuating environmental conditions. Although extensive cell-culture-based analyses have identified diverse mediators of amino acid sensing upstream of mTOR, studies using animal models to examine intestine-initiated amino acid sensing mechanisms under specific physiological conditions are lacking. Here, we developed a Caenorhabditis elegans model to examine the impact of amino acid deficiency on development. We discovered a leucine-derived monomethyl branched-chain fatty acid and its downstream metabolite, glycosphingolipid, which critically mediates the overall amino acid sensing by intestinal and neuronal mTORC1, which in turn regulates postembryonic development at least partly by controlling protein translation and ribosomal biogenesis. Additional data suggest that a similar mechanism may operate in mammals. This study uncovers an amino-acid-sensing mechanism mediated by a lipid biosynthesis pathway.
Collapse
Affiliation(s)
- Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Shao
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Xie Y, Zhang P, Zhang L. Genome-Wide Transcriptional Responses of Marine Nematode Litoditis marina to Hyposaline and Hypersaline Stresses. Front Physiol 2021; 12:672099. [PMID: 34017268 PMCID: PMC8129518 DOI: 10.3389/fphys.2021.672099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of osmotic homeostasis is essential for all organisms, especially for marine animals in the ocean with 3% salinity or higher. However, the underlying molecular mechanisms that how marine animals adapt to high salinity environment compared to their terrestrial relatives, remain elusive. Here, we investigated marine animal’s genome-wide transcriptional responses to salinity stresses using an emerging marine nematode model Litoditis marina. We found that the transthyretin-like family genes were significantly increased in both hyposaline and hypersaline conditions, while multiple neurotransmitter receptor and ion transporter genes were down-regulated in both conditions, suggesting the existence of conserved strategies for response to stressful salinity environments in L. marina. Unsaturated fatty acids biosynthesis related genes, neuronal related tubulins and intraflagellar transport genes were specifically up-regulated in hyposaline treated worms. By contrast, cuticle related collagen genes were enriched and up-regulated for hypersaline response. Given a wide range of salinity tolerance of the marine nematodes, this study and further genetic analysis of key gene(s) of osmoregulation in L. marina will likely provide important insights into biological evolution and environmental adaptation mechanisms in nematodes and other invertebrate animals in general.
Collapse
Affiliation(s)
- Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
10
|
Abstract
This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in Caenorhabditis elegans. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing C. elegans as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Huang Y, Huang S, Di Scala C, Wang Q, Wandall HH, Fantini J, Zhang YQ. The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. eLife 2018; 7:38183. [PMID: 30355446 PMCID: PMC6202054 DOI: 10.7554/elife.38183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Lipids are structural components of cellular membranes and signaling molecules that are widely involved in development and diseases, but the underlying molecular mechanisms are poorly understood, partly because of the vast variety of lipid species and complexity of synthetic and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide (MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL MacCer promotes synaptic bouton formation via Wg signaling.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Sheng Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Sino-Danish College, Sino-Danish Center for Education and Research, Chinese Academy of Sciences, Beijing, China
| | | | - Qifu Wang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Fantini
- UNIS UMR_S 1072, INSERM, Aix-Marseille Université, Marseille, France
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
12
|
He B, Zhang J, Wang Y, Li Y, Zou X, Liang B. Identification of cytochrome b5 CYTB-5.1 and CYTB-5.2 in C. elegans; evidence for differential regulation of SCD. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:235-246. [PMID: 29237573 DOI: 10.1016/j.bbalip.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
Unsaturated fatty acids (UFAs) play crucial roles in living organisms regarding development, energy metabolism, stress resistance, etc. The biosynthesis of UFAs starts from the introduction of the first double bond by stearoyl-CoA desaturase (SCD), converting saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs). This desaturation is considered to be an aerobic process that requires cytochrome b5 reductase, cytochrome b5 and SCD. However, this enzyme system remains elusive in Caenorhabditis elegans. Here, we show that inactivation by RNAi knockdown or mutation (gk442189) of putative cytochrome b5 genes cytb-5.1 led to reduced conversion of C18:0 to C18:1(n-9) by SCD desaturases FAT-6/7 in C. elegans. On the contrary, cytb-5.2RNAi and cytb-5.2(gk113588) mutant worms showed decreased conversion of C16:0 to C16:1(n-7) by FAT-5 desaturase. Dietary supplementation with C18:1(n-9) and C18:2(n-6) also showed that CYTB-5.1 is likely required for the activity of FAT-6/7 desaturases, but not for FAT-1 to FAT-4 desaturases. Interestingly, co-immunoprecipitation (Co-IP) demonstrated that either FAT-7 or FAT-5 has ability to interact with both CYTB-5.1 and CYTB-5.2. Moreover, RNAi knockdown of cytb-5.1 upregulates the transcriptional and translational expression of fat-5 to fat-7, which may be due to the feedback induction by reduced C18:1(n-9) and downstream fatty acids. Furthermore, both CYTB-5.1 and CYTB-5.2 are involved in fat accumulation, fertility and lifespan in worms, which may be independent of changes in fatty acid compositions. Collectively, these findings for the first time reveal the differential regulation of various SCDs by distinct cytochrome b5 CYTB-5.1 and CYTB-5.2 in the biosynthesis of UFAs in C. elegans.
Collapse
Affiliation(s)
- Baoshen He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yanli Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yamei Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230036, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
13
|
Fang B, Zhang M, Ren FZ, Zhou XD. Lifelong diet including common unsaturated fatty acids extends the lifespan and affects oxidation in
Caenorhabditis elegans
consistently with hormesis model. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Fang
- Academy of State Administration of GrainBeijingP. R. China
- Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijingP. R. China
| | - Ming Zhang
- School of Food Science and Chemical EngineeringBeijing Technology and Business UniversityBeijingP. R. China
| | - Fa Zheng Ren
- Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijingP. R. China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
| | - Xiao Dan Zhou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
| |
Collapse
|
14
|
Ying L, Zhu H. Current advances in the functional studies of fatty acids and fatty acid-derived lipids in C. elegans. WORM 2016; 5:e1184814. [PMID: 27695652 DOI: 10.1080/21624054.2016.1184814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 02/08/2023]
Abstract
Fatty acids and fatty acid-derived lipids (FAs/FADLs) play essential roles in many living organisms, including contributions to membrane structure and signaling transduction. Aberrant metabolism of FAs/FADLs often causes diseases and health problems. However, the detailed mechanistic studies of specific FAs/FADLs in vivo are limited. C. elegans has been an effective model system for FA/ FADL studies due to its powerful genetics and conserved lipid biosynthetic pathways. The recently developed high-throughput analytic tools also enable sophisticated profiling of lipids molecules in C. elegans, which is critical for understanding their specific functions. Here we review a subset of current advances in FA/FADL functional studies in C. elegans.
Collapse
Affiliation(s)
- Lu Ying
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| |
Collapse
|
15
|
Zhang Y, Wang H, Zhang J, Hu Y, Zhang L, Wu X, Su X, Li T, Zou X, Liang B. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:310-319. [PMID: 26806391 DOI: 10.1016/j.bbalip.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/13/2015] [Accepted: 01/17/2016] [Indexed: 11/23/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.
Collapse
Affiliation(s)
- Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haizhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ying Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyun Wu
- Key Laboratory of Puer Tea Science, Ministry of Education (Yunnan Agricultural University), Kunming 650201, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215006, China
| | - Tingting Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215006, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
16
|
Comparative Lipidomics of Caenorhabditis elegans Metabolic Disease Models by SWATH Non-Targeted Tandem Mass Spectrometry. Metabolites 2015; 5:677-96. [PMID: 26569325 PMCID: PMC4693190 DOI: 10.3390/metabo5040677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
Tandem mass spectrometry (MS/MS) with Sequential Window Acquisition of all Theoretical (SWATH) mass spectra generates a comprehensive archive of lipid species within an extract for retrospective, quantitative MS/MS analysis. Here we apply this new technology in Caenorhabditis elegans (C. elegans) to identify potential lipid mediators and pathways. The DAF-1 type I TGF-β and DAF-2 insulin receptors transmit endocrine signals that couple metabolic status to fertility and lifespan. Mutations in daf-1 and daf-2 reduce prostaglandin-endoperoxide synthase (i.e., Cox)-independent prostaglandin synthesis, increase triacylglyceride storage, and alter transcription of numerous lipid metabolism genes. However, the extent to which DAF-1 and DAF-2 signaling modulate lipid metabolism and the underlying mechanisms are not well understood. MS/MSALL with SWATH analysis across the groups identified significant changes in numerous lipids, including specific triacylglycerols, diacylglycerols, and phosphatidylinositols. Examples are provided, using retrospective neutral loss and precursor ion scans as well as MS/MS spectra, to help identify annotated lipids and search libraries for lipids of interest. As proof of principle, we used comparative lipidomics to investigate the prostaglandin metabolism pathway. SWATH data support an unanticipated model: Cox-independent prostaglandin synthesis may involve lysophosphatidylcholine and other lyso glycerophospholipids. This study showcases the power of comprehensive, retrospectively searchable lipid archives as a systems approach for biological discovery in genetic animal models.
Collapse
|
17
|
Deline M, Keller J, Rothe M, Schunck WH, Menzel R, Watts JL. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans. Sci Rep 2015; 5:15417. [PMID: 26486965 PMCID: PMC4614016 DOI: 10.1038/srep15417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.
Collapse
Affiliation(s)
- Marshall Deline
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| | - Julia Keller
- Humboldt-Universität zu Berlin, Department of Biology, Ecology, Philippstr. 13, House 18, 10115 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Wolf-Hagen Schunck
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Department of Biology, Ecology, Philippstr. 13, House 18, 10115 Berlin, Germany
| | - Jennifer L. Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| |
Collapse
|
18
|
Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 2015; 11:e1005221. [PMID: 25978409 PMCID: PMC4433240 DOI: 10.1371/journal.pgen.1005221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/14/2015] [Indexed: 02/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. The bone morphogenetic protein (BMP) signaling pathway is required for multiple developmental processes during metazoan development. Various diseases, including cancer, can result from mis-regulation of the BMP pathway. Thus, it is critical to identify factors that ensure proper regulation of BMP signaling. Using the nematode C. elegans, we have devised a highly specific and sensitive genetic screen to identify new modulators in the BMP pathway. Through this screen, we identified three conserved tetraspanin molecules as novel factors that function to promote BMP signaling in a living organism. We further showed that these three tetraspanins likely form a complex and function together with glycosphingolipids to promote BMP signaling. Recent studies have implicated several tetraspanins in cancer initiation, progression and metastasis in mammals. Our findings suggest that the involvement of tetraspanins in cancer may partially be due to their function in modulating the activity of BMP signaling.
Collapse
|